Landscape Characterization of the Cauvery Basin, India using Geomorphic Indices Derived from the Digital Elevation Model
DOI:
https://doi.org/10.58825/jog.2025.19.2.257Keywords:
Landscape, geomorphic indices, hypsometric analysis, Hack index, base-level fallAbstract
Landscape characterization is essential for deciphering geomorphic evolution, resource potential, and sustainable management in river basins. While geomorphic indices are commonly used for quantifying terrain and assessing erosion, their integrated application with landform features remains underexplored. This study offers a comprehensive landscape assessment of the Cauvery River Basin, India, by integrating geomorphic indices with landform features to study spatial patterns of fluvial erosion. Using Shuttle Radar Topography Mission (SRTM-30 m) data, three geomorphic indices-Hypsometric Integral (HI), Hack’s Stream-Length Gradient (SL) Index, and Normalized Channel Steepness (Ksn) Index-were computed across six sub-basins, along with landform classification. The HI values ranged from 0.11 to 0.27, indicating varied stages of landscape development, with the Shimsha sub-basin showing the highest HI (0.27), and the Kabini, Noyil, and lower Cauvery basins the lowest (0.11–0.12), suggesting mature, eroded terrains. Knickpoints analysis showed intense incision in the Bhavani basin (3162 knickpoints), supported by high Ksn values (90), and high SL values (up to 160,884 gradient meters), particularly around waterfalls and dams shaped by lithological controls. Clustering of knickpoints at elevations between 0-120 m above sea level, suggests that Quaternary eustatic base-level fall triggered a phase of river rejuvenation across the basin. Landform classification shows plains dominate (52-89 % areal coverage), especially in lower sub-basins, while ridge and deeply incised streams show more active erosion zones. This integration of geomorphic indices and landforms shows a framework for linking fluvial erosion to sea-level history, providing insights into past geomorphic responses, lithological controls over river basin evolution, and implications for sustainable land and water resource management.
References
Adediran, A.O., I. Parcharidis, M. Poscolieri and K. Pavlopoulos (2004). Computer-assisted discrimination of morphological units on north-central Crete (Greece) by applying multivariate statistics to local relief gradients. Geomorphology, 58, 357–370. http://dx.doi.org/10.1016/j.geomorph.2003.07.024
Alexandrowicz, Z. (1994). Geologically controlled waterfall types in the Outer Carpathians. Geomorphology, 9(2), 155–165. https://doi.org/10.1016/0169-555X(94)90073-6
Anderson, R.S. and S.P. Anderson (2010). Geomorphology. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511794827
Bishop, P., T.B. Hoey, J.D. Jansen and I.L. Artza (2005). Knickpoint recession rate and catchment area: the case of uplifted rivers in eastern Scotland. Earth Surface Processes and Landforms, 30(6), 767–778. https://doi.org/10.1002/esp.1191
Blaszczynski, J.S. (1997). Landform characterization with geographic information systems. Photogrammetric Engineering and Remote Sensing, 53(2), 183–191.
Bull, W.B. (2007). Tectonic geomorphology of mountains: A new approach to paleoseismology. Blackwell Publishing Ltd., Oxford, 316 p. https://doi.org/10.1002/9780470692318
Burbank, D.W. and R.S. Anderson (2011). Tectonic geomorphology, second ed. John Wiley & Sons, Ltd, Chichester, UK. https://doi.org/10.1002/9781444345063
Central Water Commission (1989). Major River Basins of India – An overview. Ministry of Water Resources, Government of India, New Delhi.
Coates, D.R. (1958). Quantitative geomorphology of small drainage basins of southern Indiana. Technical Report no. 10, Project NR 389-042, Office of Naval Research, Geography Branch. Department of Geology, Columbia University, New York.
Das, S., A. Gupta and S. Ghosh (2017). Exploring groundwater potential zones using MIF technique in a semi-arid region: A case study of Hingoli district, Maharashtra. Spatial Information Research, 25(6), 749–756. https://doi.org/10.1007/s41324-017-0144-0
Das, S., S.D. Pardeshi, P.P. Kulkarni and A. Doke (2018). Extraction of lineaments from different azimuth angles using geospatial techniques: A case study of Pravara Basin, Maharashtra, India. Arabian Journal of Geosciences, 11, 160. https://doi.org/10.1007/s12517-018-3522-6
Das, S. and S.D. Pardeshi (2018b). Comparative analysis of lineaments extracted from Cartosat, SRTM and ASTER DEM: A study based on four watersheds in the Konkan region, India. Spatial Information Research, 26(1), 47–57. https://doi.org/10.1007/s41324-017-0155-x
Das, S. and S.D. Pardeshi (2018a). Morphometric analysis of Vaitarna and Ulhas river basins, Maharashtra, India: Using geospatial techniques. Applied Water Science, 8(6), 158. https://doi.org/10.1007/s13201-018-0801-z
Das, S. (2018). Geographic information system and AHP-based flood hazard zonation of Vaitarna Basin, Maharashtra, India. Arabian Journal of Geosciences, 11(19), 576. https://doi.org/10.1007/s12517-018-3933-4
Das, S. (2018). Geomorphic characteristics of a bedrock river inferred from drainage quantification, longitudinal profile, knickzone identification and concavity analysis: A DEM-based study. Arabian Journal of Geosciences, 11, 680. https://doi.org/10.1007/s12517-018-4039-8
Dikau, R., E.E. Brabb and R.M. Mark (1991). Landform classification of New Mexico by computer (No. 91-634). U.S. Department of the Interior, U.S. Geological Survey. https://doi.org/10.3133/ofr91634
Dikau, R. (1989). The application of a digital relief model to landform analysis. In: J.F. Raper (ed), Three-dimensional applications in geographic information systems. Taylor and Francis, London, pp. 51–77. https://doi.org/10.1201/9781003069454-5
Dusan, B., B. Jan, K. Daniel and B. Lenka (2017). Morphometric and geological conditions for sediment accumulation in the Udava River, Outer Carpathians, Slovakia. Journal of Geographical Sciences, 27(8), 981–998. https://doi.org/10.1007/s11442-017-1416-2
Etchebehere, M.L.C., A.R. Saad, V.J. Fulfaro and J.A.J. Perinotto (2004). Aplicação do índice “Relação Declividade–Extensão – RDE” na Bacia do Rio do Peixe (SP) para detecção de deformações neotectônicas. Revista do Instituto de Geociências USP, Série Científica, 4(2), 43–56. https://doi.org/10.5327/S1519-874X2004000200004
Etchebehere, M.L.C., A.R. Saad, G. Santoni, F.C. Casado and V.J. Fulfaro (2006). Detecção de prováveis deformações neotectônicas no vale do Rio do Peixe, região ocidental paulista, mediante aplicação de índices RDE (Relação Declividade–Extensão) em segmentos de drenagem. Revista UNESP Geociências, 25(3), 271–287.
Gailleton, B., S.M. Mudd, F.J. Clubb, D. Peifer and M.D. Hurst (2019). A segmentation approach for the reproducible extraction and quantification of knickpoints from river long profiles. Earth Surface Dynamics, 7(1), 211–230. https://doi.org/10.5194/esurf-7-211-2019
García, A.F., Z. Zhu, T.L. Ku, O.A. Chadwick and J. Chacon Montero (2004). An incision wave in the geologic record: Alpujarran corridor, southern Spain (Almería). Geomorphology, 60(1–2), 37–72. https://doi.org/10.1016/j.geomorph.2003.07.012
Gregory, K.J. (1966). Dry valley and the composition of the drainage net. Journal of Hydrology, 4, 327–340. https://doi.org/10.1016/0022-1694(66)90096-5
Guisan, A., S.B. Weiss and A.D. Weiss (1999). GLM versus CCA spatial modeling of plant species distribution. Plant Ecology, 143(1), 107–122. https://doi.org/10.1023/A:1009841519580
Hack, J.T. (1973). Stream-profile analysis and stream-gradient index. Journal of Research of the U.S. Geological Survey, 1, 421–429.
Hayakawa, Y.S. and T. Oguchi (2006). DEM-based identification of fluvial knickzones and its application to Japanese mountain rivers. Geomorphology, 78(1–2), 90–106. https://doi.org/10.1016/j.geomorph.2006.01.018
Horton, R.E. (1932). Drainage basin characteristics. Transactions of the American Geophysical Union, 13(1), 350–361. https://doi.org/10.1029/TR013i001p00350
Horton, R.E. (1945). Erosional development of streams and their drainage basins: Hydrophysical approach to quantitative morphology. Bulletin of the Geological Society of America, 56(3), 275–370. https://doi.org/10.1130/0016-7606(1945)56[275:EDOSAT]2.0.CO;2
Howard, A.D. and G. Kerby (1983). Channel changes in badlands. Geological Society of America Bulletin, 94(6), 739–752. https://doi.org/10.1130/0016-7606(1983)94%3C739:CCIB%3E2.0.CO;2
Howard, A.D., W.E. Dietrich and M.A. Seidl (1994). Modeling fluvial erosion on regional to continental scales. Journal of Geophysical Research, 99(B7), 13971–13986. https://doi.org/10.1029/94JB00744
Howard, A.D. (1994). A detachment-limited model of drainage basin evolution. Water Resources Research, 30(7), 2261–2285. https://doi.org/10.1029/94WR00757
Huang, X. and J.D. Niemann (2006). An evaluation of the geomorphically effective event for fluvial processes over long periods. Journal of Geophysical Research: Earth Surface, 111(F3). https://doi.org/10.1029/2006JF000477
Jaiswara, N.K., S.K. Kotluri, P. Pandey and A.K. Pandey (2020). MATLAB functions for extracting hypsometry, stream-length gradient index, steepness index, chi gradient of channel, and swath profiles from digital elevation model (DEM) and other spatial data for landscape characterization. Applied Computing and Geosciences, 7, 100033. https://doi.org/10.1016/j.acags.2020.100033
Jenness, J. (2006). Topographic Position Index (tpi_jen.avx) extension for ArcView 3.x, v. 1.3a. Jenness Enterprises. http://www.jennessent.com/arcview/tpi.htm
Keller, E.A. and N. Pinter (2002). Active tectonics, earthquakes, uplift and landscape, 2nd edn. Prentice Hall, Upper Saddle River, 362 p.
Kirby, E. and K.X. Whipple (2012). Expression of active tectonics in erosional landscapes. Journal of Structural Geology, 44, 54–75. https://doi.org/10.1016/j.jsg.2012.07.009
Kumar, A., S.K. Samuel and V. Vyas (2015). Morphometric analysis of six subwatersheds in the central zone of Narmada River. Arabian Journal of Geosciences, 8, 5685–5712. https://doi.org/10.1007/s12517-014-1655-9
Lambeck, K., H. Rouby, A. Purcell, Y. Sun and M. Sambridge (2014). Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proceedings of the National Academy of Sciences of the United States of America. https://doi.org/10.1073/pnas.1411762111
Langbein, W.B. (1947). Topographic characteristics of drainage basins. U.S. Geological Survey Water-Supply Paper, 968-C, 125–157. https://doi.org/10.3133/wsp968C
Lewis, W.V. (1945). Nick points and the curve of water erosion. Geological Magazine, 82(6), 256–266. https://doi.org/10.1017/S0016756800082108
Manu, M.S. and S. Anirudhan (2008). Drainage characteristics of Achankovil River basin, Kerala. Journal of the Geological Society of India, 71(6), 841–850. https://www.geosocindia.org/index.php/jgsi/article/view/80780
Marple, R.T. and P. Talwani (1993). Evidence of possible tectonic upwarping along the South Carolina coastal plain from an examination of river morphology and elevation data. Geology, 21(7), 651–654. https://doi.org/10.1130/0091-7613(1993)021%3C0651:EOPTUA%3E2.3.CO;2
Martinez, M., E. Hayakawa, J.C. Stevaux and J.D. Profeta (2011). SL index as an indicator of anomalies in the longitudinal profile of the Pirapó River. Revista Geociências, 30(1), 63–76.
McKeown, F.A., M. Jones-Cecil, B.L. Askew and M.B. McGrath (1988). Analysis of stream-profile data and inferred tectonic activity, Eastern Ozark Mountains region. U.S. Geological Survey Bulletin, 1807, 39. https://doi.org/10.3133/b1807
Merrits, D. and T. Hesterberg (1994). Stream networks and long-term surface uplift in the New Madrid seismic zone. Science, 265(5175), 1081–1084. https://doi.org/10.1126/science.265.5175.1081
Meybeck, M., P. Green and C. Vorosmarty (2001). A new typology for mountains and other relief classes. Mountain Research and Development, 21(1), 34–45. https://doi.org/10.1659/0276-4741(2001)021[0034:ANTFMA]2.0.CO;2
Miller, J.R. (1991). The influence of bedrock geology on knickpoint development and channel-bed degradation along downcutting streams in south-central Indiana. Journal of Geology, 99(4), 591–605. https://doi.org/10.1086/629519
Miller, V.C. (1953). A quantitative geomorphic study of drainage basin characteristics in the Clinch Mountain area, Virginia and Tennessee. Department of Geology, Columbia University, New York, pp 389–402.
Moglen, G.E. and R.L. Bras (1995). The effect of spatial heterogeneities on geomorphic expression in a model of basin evolution. Water Resources Research, 31(10), 2613–2623. https://doi.org/10.1029/95WR02036
Mokarram, M. and A. Seif (2014). GIS-based automated landform classification in Zagros mountain (case study: Grain mountain). Bulletin of Environmental Pharmacology and Life Sciences, 3(3), 20–32.
Montgomery, D.R., T.B. Abbe, J.M. Buffington, N.P. Peterson, K.M. Schmidt and J.D. Stock (1996). Distribution of bedrock and alluvial channels in forested mountain drainage basins. Nature, 381, 587–589. https://doi.org/10.1038/381587a0
Mudd, S.M., M. Attal, D.T. Milodowski, S.W.D. Grieve and D.A. Valters (2014). A statistical framework to quantify spatial variation in channel gradients using the integral method of channel profile analysis. Journal of Geophysical Research: Earth Surface, 119(2), 138–152. https://doi.org/10.1002/2013JF002981
Nagendra, R. and A.N. Reddy (2017). Major geologic events of the Cauvery Basin, India and their correlation with global signatures – A review. Journal of Palaeogeography, 6(1), 69–83. https://doi.org/10.1016/j.jop.2016.09.002
Pedrera, A., J.V. Pérez-Peña, J. Galindo-Zaldívar, J.M. Azañón and A. Azor (2009). Testing the sensitivity of geomorphic indices in areas of low-rate active folding (eastern Betic Cordillera, Spain). Geomorphology, 105(3–4), 218–231. https://doi.org/10.1016/j.geomorph.2008.09.026
Pérez-Peña, J.V., J.M. Azañón and A. Azor (2009). CalHypso: an ArcGIS extension to calculate hypsometric curves and their statistical moments. Applications to drainage basin analysis in SE Spain. Computers and Geosciences, 35(6), 1214–1223. https://doi.org/10.1016/j.cageo.2008.06.006
Perron, J.T. and L. Royden (2013). An integral approach to bedrock river profile analysis. Earth Surface Processes and Landforms, 38(6), 570–576. https://doi.org/10.1002/esp.3302
Pike, R.J. (1999). A bibliography of geomorphometry, the quantitative representation of topography, Supplement 3 (Open-File Report 99-140). U.S. Geological Survey. https://doi.org/10.3133/ofr99140
Queiroz, G., E. Salamuni and E. Nascimento (2015). Knickpoint finder: A software tool that improves neotectonic analysis. Computers and Geosciences, 76, 80–87. https://doi.org/10.1016/j.cageo.2014.11.004
Raju, D.S.N., B.C. Jaiprakash, C.N. Ravindran, R. Kalyanasunder and P. Ramesh (1994). The magnitude of hiatus and sea level changes across the K–T boundary in Cauvery and Krishna Godavari Basin. Journal of the Geological Society of India, 44(3), 301–315.
Ramkumar, M., M. Santosh, S.A. Rahaman, A. Balasundareshwaran, K. Balasubramani, M. Mathew, B. Sautter, N. Siddiqui, P. Usha, K. Sreerhishya, G. Prithiviraj, R. Nagarajan, T. Venugopal, D. Menier and K. Kumaraswamy (2019). Tectono-morphological evolution of the Cauvery, Vaigai, and Thamirabarani river basins: Implications on timing, stratigraphic markers, relative roles of intrinsic and extrinsic factors, and transience of Southern Indian landscape. Geological Journal, 54(5), 1–42. https://doi.org/10.1002/gj.3520
Ramkumar, M., D. Stüben and Z. Berner (2003). Lithostratigraphy, depositional history, and sea level changes of the Cauvery Basin, southern India. Geological Annals of the Balkan Peninsula, 65(1), 1–27. https://doi.org/10.2298/GABP0301001M
Saadat, H., R. Bonnell, F. Sharifi, G. Mehuys, M. Namdar and S. Ale-Ebrahim (2008). Landform classification from a digital elevation model and satellite imagery. Geomorphology, 100(3), 453–464. https://doi.org/10.1016/j.geomorph.2008.01.011
Schmidt, J. and A. Hewitt (2004). Fuzzy land element classification from DTMs based on geometry and terrain position. Geoderma, 121(3–4), 243–256. https://doi.org/10.1016/j.geoderma.2003.10.008
Schoenbohm, L., K. Whipple, B. Burchfiel and L. Chen (2004). Geomorphic constraints on surface uplift, exhumation, and plateau growth in the Red River region, Yunnan Province, China. Bulletin of the Geological Society of America, 116(7–8), 895–909. https://doi.org/10.1130/B25364.1
Schumm, S.A. (1956). Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Bulletin of the Geological Society of America, 67(5), 597–646. https://doi.org/10.1130/0016-7606(1956)67[597:EODSAS]2.0.CO;2
Seeber, L. and V. Gornitz (1983). River profiles along the Himalayan arc as indicators of active tectonics. Tectonophysics, 92(4), 335–367. https://doi.org/10.1016/0040-1951(83)90201-9
Snyder, N.P., K.X. Whipple, G.E. Tucker and D.J. Merritts (2000). Landscape response to tectonic forcing: digital elevation model analysis of stream profiles in the Mendocino triple junction region, Northern California. Bulletin of the Geological Society of America, 112(8), 1250–1263. https://doi.org/10.1130/0016-7606(2000)112%3C1250:LRTTFD%3E2.0.CO;2
Sreedevi, P.D., K. Subrahmanyam and A. Shakeel (2005). The significance of morphometric analysis for obtaining groundwater potential zones in a structurally controlled terrain. Environmental Geology, 47(3), 412–420. https://doi.org/10.1007/s00254-004-1166-1
Stalin, M. and H. Achyuthan (2014). Cauvery River: Late Quaternary fluvial process and landforms. Geophysical Research Abstracts, 16, EGU2014-16266.
Strahler, A.N. (1952). Hypsometric (area-altitude) analysis of erosional topography. Bulletin of the Geological Society of America, 63(11), 1117–1142. https://doi.org/10.1130/0016-7606(1952)63[1117:HAAOET]2.0.CO;2
Strahler, A.N. (1957). Quantitative analysis of watershed geomorphology. Transactions of the American Geophysical Union, 38(6), 913–920. https://doi.org/10.1029/TR038i006p00913
Sun, C., T. Wan, X. Xie, X. Shen and K. Liang (2016). Knickpoint series of gullies along the Luoyunshan Piedmont and its relation with fault activity since late Pleistocene. Geomorphology, 268(1–2), 266–274. https://doi.org/10.1016/j.geomorph.2016.06.026
Thomas, J., S. Joseph, K.P. Thrivikramji and G. Abe (2011). Morphometric analysis of the drainage system and its hydrological implication in the rain shadow region, Kerala, India. Journal of Geographical Sciences, 21(6), 1077–1088. https://doi.org/10.1007/s11442-011-0901-2
Weiss, A. (2001). Topographic position and landforms analysis. In: Poster presentation, ESRI User Conference, San Diego, CA.
Whipple, K.X., G.S. Hancock and R.S. Anderson (2000). River incision into bedrock: mechanics and relative efficacy of plucking, abrasion, and cavitation. Bulletin of the Geological Society of America, 112(3), 490–503. https://doi.org/10.1130/0016-7606(2000)112%3C490:RIIBMA%3E2.0.CO;2
Whipple, K.X. and G.E. Tucker (1999). Dynamics of the stream-power river incision model: implications for height limits of mountain ranges, landscape response timescales, and research needs. Journal of Geophysical Research, 104(B8), 17661–17674. https://doi.org/10.1029/1999JB900120
Whipple, K.X. (2004). Bedrock rivers and the geomorphology of active orogens. Annual Review of Earth and Planetary Sciences, 32(1), 151–185. https://doi.org/10.1146/annurev.earth.32.101802.120356
Willgoose, G. and G. Hancock (1998). Revisiting the hypsometric curve as an indicator of form and process in transport-limited catchment. Earth Surface Processes and Landforms, 23(7), 611–623. https://doi.org/10.1002/(SICI)1096-9837(199807)23:7%3C611::AID-ESP872%3E3.0.CO;2-Y
Wobus, C., K.X. Whipple, E. Kirby, N. Snyder, J. Johnson, K. Spyropolou, B. Crosby and D. Sheehan (2006). Tectonics from topography: procedures, promise, and pitfalls. Geological Society of America Special Paper, 398, 55–74. https://doi.org/10.1130/2006.2398(04)
Wohl, E.E., D.M. Thompson and A.J. Miller (1999). Canyons with undulating walls. Bulletin of the Geological Society of America, 111(7), 949–959. https://doi.org/10.1130/0016-7606(1999)111%3C0949:CWUW%3E2.3.CO;2
Zaprowski, B. J., E. B. Evenson, F. J. Pazzaglia and J. B. Epstein (2001). Knickzone propagation in the Black Hills and northern High Plains: a different perspective on the late Cenozoic exhumation of the Laramide Rocky Mountains. Geology, 29(6), 547–550. http://dx.doi.org/10.1130/0091-7613(2001)029%3C0547:KPITBH%3E2.0.CO;2
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Journal of Geomatics

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
