On the Prediction of Cloud-to-Ground Lightning Occurrences over the Indian Region using Different Initial and Boundary Conditions
DOI:
https://doi.org/10.58825/jog.2025.19.2.245Keywords:
Lightning, Climate, Hazards, Prediction, Risk, WRFAbstract
Atmospheric lightning, one of the deadliest natural disasters globally, poses significant risks, making research in this area crucial for risk reduction. This study evaluates the performance of the Weather Research and Forecasting (WRF)-Elec model for forecasting lightning occurrences over India during September 2023, utilizing initial and boundary conditions from the Global Forecast System (GFS) and the one from the modified GFS from the National Centre for Medium Range Weather Forecasting (NCMRWF), viz. NGFS. The WRF model outputs are compared with data from the National Remote Sensing Centre’s Lightning Detection Sensor Network (NRSC-LDSN). Results indicate that NGFS provides better forecasting accuracy compared to GFS, as reflected by higher Probability of Detection (POD) of 0.79 and lower False Alarm Ratio (FAR). We suggest that The NGFS data’s integration of advanced assimilation techniques and comprehensive observational data improves the model performance, emphasizing the importance of localized and enhanced inputs for accurate lightning forecasting, which is crucial for mitigating lightning-related risks.
References
Betz, H. D., K. Schmidt, P. Laroche, P. Blanchet, W. P. Oettinger, E. Defer, Z. Dziewit and J. Konarski (2009). LINET—An international lightning detection network in Europe. Atmospheric Research, 91, 564–573. https://doi.org/10.1016/j.atmosres.2008.06.012.
Cecil, D. J., D. E. Buechler and R. J. Blakeslee (2014). Gridded lightning climatology from TRMM-LIS and OTD: Data set description. Atmospheric Research, 135–136, 404–414. https://doi.org/10.1016/j.atmosres.2012.06.028.
Chandra, S., D. Siingh, N. J. Victor and A. K. Kamra (2021). Lightning activity over South/Southeast Asia: Modulation by thermodynamics of lower atmosphere. Atmospheric Research, 250, 105378. https://doi.org/10.1016/j.atmosres.2020.105378.
Dementyeva, S., M. Shatalina, A. Popykina, F. Sarafanov, M. Kulikov and E. Mareev (2023). Trends and features of thunderstorms and lightning activity in the Upper Volga Region. Atmosphere, 14, 674. https://doi.org/10.3390/atmos14040674.
Dimitriou, A., C. A. Charalambous and N. Kokkinos (2016). Integrating the loss of economic value in lightning related risk assessments of large scale photovoltaic systems participating in regulated and competitive energy markets. 33rd International Conference on Lightning Protection (ICLP), Estoril, Portugal, pp. 1–6. https://doi.org/10.1109/ICLP.2016.7791507.
Dudhia, J. (1989). Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. Journal of Atmospheric Sciences, 46, 3077–3107. https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.
Gautam, A. S., A. Joshi, S. Chandra, U. C. Dumka, D. Singh and R. P. Singh (2022). Relationship between lightning and aerosol optical depth over the Uttarakhand region in India: Thermodynamic perspective. Urban Science, 6, 70. https://doi.org/10.3390/urbansci6040070.
Gharaylou, M., N. Pegahfar and M. M. Farahani (2020). Influence of tilting effect on charge structure and lightning flash density in two different convective environments. Meteorological Applications, 27, e1957. https://doi.org/10.1002/met.1957.
Grell, G. A. and D. Dévényi (2002). A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophysical Research Letters, 29, 1693. https://doi.org/10.1029/2002GL015311.
Justice, C. O., E. Vermote, J. R. G. Townshend (1998). The moderate resolution imaging spectroradiometer (MODIS): land remote sensing for global change research. IEEE Transactions on Geoscience and Remote Sensing, 36, 1228–1249.
Kandalgaonkar, S. S., M. I. R. Tinmaker, J. R. Kulkarni, A. Nath, M. K. Kulkarni and H. K. Trimbake (2005). Spatio-temporal variability of lightning activity over the Indian region. Journal of Geophysical Research, 110, D11108. https://doi.org/10.1029/2004JD005631.
Kumar, A., S. Das and S. K. Panda (2021). Numerical simulation of a widespread lightning event over north India using an ensemble of WRF modeling configurations. Journal of Atmospheric and Solar-Terrestrial Physics, 241, 105984. https://doi.org/10.1016/j.jastp.2022.105984.
Lay, E. H., A. R. Jacobson, R. H. Holzworth (2007). Local time variation in land/ocean lightning count rates as measured by the World Wide Lightning Location Network. Journal of Geophysical Research, 112, D13111. https://doi.org/10.1029/2006JD007944.
Lu, M., Y. Zhang, Z. Ma, M. Yu, M. Chen, J. Zheng and M. Wang (2021). Lightning strike location identification based on 3D weather radar data. Frontiers in Environmental Science, 9, 714067. https://doi.org/10.3389/fenvs.2021.714067.
Mansell, E. R., C. L. Ziegler and E. C. Bruning (2010). Simulated electrification of a small thunderstorm with two-moment bulk microphysics. Journal of Atmospheric Sciences, 67, 171–194. https://doi.org/10.1175/2009JAS2965.1.
Minobe, S., J. H. Park and K. S. Virts (2020). Diurnal cycles of precipitation and lightning in the tropics observed by TRMM3G68, GSMaP, LIS, and WWLLN. Journal of Climate, 33(10), 4293–4313. https://doi.org/10.1175/JCLI-D-19-0389.1.
Mishra, M., T. Acharyya, and C. A. Guimarães Santos (2022). Mapping main risk areas of lightning fatalities between 2000 and 2020 over Odisha state (India): A diagnostic approach to reduce lightning fatalities using statistical and spatiotemporal analyses. International Journal of Disaster Risk Reduction, 79, 103145. https://doi.org/10.1016/j.ijdrr.2022.103145.
Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono and S. A. Clough (1997). Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. Journal of Geophysical Research, 102, 16663–16682. https://doi.org/10.1029/97JD00237.
Mohan, G. M., K. G. Vani, A. Hazra, C. Mallick, and H. S. Chaudhar (2021). Evaluating different lightning parameterization schemes to simulate lightning flash counts over Maharashtra, India. Atmospheric Research, 255, 105532. https://doi.org/10.1016/j.atmosres.2021.105532.
Mukherjee, P. and B. Ramakrishnan (2023). Investigation of unique Arabian Sea tropical cyclone with GPU-based WRF model: A case study of Shaheen. Journal of Atmospheric and Solar-Terrestrial Physics, 246, 106052. https://doi.org/10.1016/j.jastp.2023.106052.
Patil, O. M., S. S. Moharana, A. K. Maurya, N. Parihar, R. Singh and A. P. Dimri (2024). Role of lightning activity in deciphering atmospheric gravity waves (AGWs) induced D-region ionospheric perturbations during extremely severe cyclonic storm (ESCS) Fani. Journal of Geophysical Research, 129. https://doi.org/10.1029/2023JA032187.
Rajeevan, M., C. K. Unnikrishnan, J. Bhate, K. Niranjan Kumar and P. P. Sreekala (2012). Northeast monsoon over India: Variability and prediction. Meteorological Applications, 19, 226–236. https://doi.org/10.1002/met.1322.
Reeve, N. and R. Toumi (1999). Lightning activity as an indicator of climate change. Quarterly Journal of the Royal Meteorological Society, 125, 893–903. https://doi.org/10.1002/qj.49712555507.
Romps, D. M., J. T. Seeley, D. Vollaro and J. Molinari (2014). Projected increase in lightning strikes in the United States due to global warming. Science, 346(6211), 851–854. https://doi.org/10.1126/science.1259100.
Saunders, A. (2013). Lightning: The costliest threat to oil tankers and refineries. Pipeline and Gas Journal, 240(7).
Shamrock, W. C., J. B. Klemp, and J. Dudhia (2005). A description of the Advanced Research WRF Version 2. NCAR Technical Note.
Singh, O. and J. Singh (2015). Lightning fatalities over India: 1979–2011. Meteorological Applications, 22, 770–778. https://doi.org/10.1002/met.1520.
Singh, T., U. Saha, V. S. Prasad and M. Das Gupta (2021). Assessment of newly developed high resolution reanalyses (IMDAA, NGFS and ERA5) against rainfall observations for Indian region. Atmospheric Research, 259, 105679. https://doi.org/10.1016/j.atmosres.2021.105679.
Taori, A., A. Suryavanshi, and S. Pawar (2022). Establishment of lightning detection sensors network in India: Generation of essential climate variable and characterization of cloud-to-ground lightning occurrences. Natural Hazards, 111, 19–32. https://doi.org/10.1007/s11069-021-05042-8.
Taori, A., R. Bothale and P. Chauhan (2023). The cloud-to-ground (CG) lightning – A disaster with climate perspectives. Know Disasters, 1(3), 06–09.
Taori, A., A. Suryavanshi, R. Goenka, D. Venkatesh and G. S. Rao (2024). Inter-comparison of World Wide Lightning Location Network (WWLLN) and Lightning Detection Sensor Network (LDSN) data over India. Journal of Atmospheric and Solar-Terrestrial Physics, 261. https://doi.org/10.1016/j.jastp.2024.106286.
Tewari, M., F. Chen, and W. Wang (2004). Implementation and verification of the unified NOAH land surface model in the WRF model. 20th Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction, Seattle, WA, American Meteorological Society, 14.2a.
Unnikrishnan, C. K., S. Pawar and V. Gopalakrishnan (2021). Satellite-observed lightning hotspots in India and lightning variability over tropical South India. Advances in Space Research, 68, 1690–1705. https://doi.org/10.1016/j.asr.2021.04.009.
Veina, V. H., S. P. Ramanathan, and S. Kokilavani (2023). Spatial vulnerability assessment and diurnal climatology of lightning events in Tamil Nadu, India. International Journal of Environment and Climate Change, 13(9), 490–501. https://doi.org/10.9734/ijecc/2023/v13i92261.
Venkatesh, D., A. Taori, and A. Suryavanshi (2023). Comparison of ground-based lightning detection network data with WRF-Elec forecasting estimates over India – Initial results. Remote Sensing Letters, 14(10), 1009–1020. https://doi.org/10.1080/2150704X.2023.2258458.
Virts, K. S., J. M. Wallace, M. L. Hutchins and R. H. Holzworth (2013). Highlights of a new ground-based, hourly global lightning climatology. Bulletin of the American Meteorological Society, 94, 1381–1391. https://doi.org/10.1175/BAMS-D-12-00082.1.
Yair Yoav (2018). Lightning hazards to human societies in a changing climate. Environ. Res. Lett. 13, 123002, https://doi.org/10.1088/1748-9326/aaea86.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Journal of Geomatics

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
