Mapping Lightning Strikes across Gujarat State for the Year 2022 and Development of Prediction Model
DOI:
https://doi.org/10.58825/jog.2025.19.1.208Keywords:
Lightning, lightning detection sensor, vulnerable locations, mapping, elevation, land coverage, weather parameters, prediction modelAbstract
Under the influence of changing climate, extreme events are getting more frequent. Atmospheric lightning is considered a natural disaster which accounts for more than 40% of the weather-related deaths worldwide. Unlike the other weather-related phenomena, mitigation efforts pertaining to lightning need high resolution information on the vulnerable regions with region specific prediction. Present study is focused on mapping lightning incidences in the state of Gujarat, India, for the year 2022 and determines the vulnerable locations within a state.
Our studies have shown that during monsoon season, most of the lightning strikes happen where the elevation is less than 30 meters above sea level and post monsoon the built area poses a serious concern. Vulnerability of strikes also increases when the temperatures are between 21-30 0C and curling wind speed is between 0-2 m/s. Our prediction model could predict 87% records correctly. The extended objective of the study is to develop a prediction model that aims to help implementing the appropriate nationwide mitigation efforts in the vulnerable geographical regions.
References
Asfur M., C. Price, J. Silverman and A. Wishkerman (2020) Why is lightning more intense over the oceans? Journal of Atmospheric and Solar-Terrestrial Physics, 202, 105259.
Andreae O.M. and D. Rosenfield (2008) Aerosol-cloud-precipitation interactions. Part 1. The nature and sources of cloud-active aerosols, Earth-Science Reviews, 89(1-2), 13-41.
ArcGIS Homepage, http://www. livingatlas.arcgis.com
Bhuvan, Indian Geo-platform of ISRO, National Remote Sensing Center, NRSC, https://bhuvan-app1.nrsc.gov.in/lightning/
Chen M., X. Gou, Y. Du (2013) The effect of ground altitude on lightning striking distance based on a bi-directional leader model. Atmospheric Research, 125-126, 76-83.
Cecil D.J., D. E. Buechler and R. J. Blakeslee (2014) Gridded lightning climatology from TRMM-LIS and OTD: Dataset description, Atmospheric Research 135–136, 404–414.
Copernicus Climate Data Store Homepage, http://www.cds.climate.copernicus.eu
Cummins K. L., M. J. Murphy, E. A. Bardo, W. L. Hiscox, R. B. Pyle and A. E. Pifer (1998) A combined TOA/MDF technology upgrade of the US National Lightning Detection Network. Journal of Geophysical Research: Atmospheres, 103(D8), 9035-9044.
Dewan A., K. A. Islam, T. R. Fariha, M. M. Murshed, A. Ishtiaque, M. S. G. Adnan and M. B. H. Chowdhury (2022) Spatial pattern and land surface features associated with cloud-to-ground lightning in Bangladesh: an exploratory study. Earth systems and environment, 6(2), 437-451
DIVA-GIS Homepage, http://www. Diva-Gis.org
Géron A. (2019) Machine Learning Algorithms studied from Oreilly’s Hands on machine Learning with Sci-kit Learn. 2nd Edn. O'Reilly Media, Inc
Ghosh R., S. D. Pawar, A. Hazra, J. Wilkinson, D. Mudiar, A. Manoj, K. Domkawale, G. Vani and V. Gopalakrishnan (2023) Seasonal Lightning Distributions over Indian Subcontinent. Earth and Space Science, 10(6)
Hazmi A., M. Hamid, R. Fernandez, H. Andre, R. Pratama and P. Emeraldi (2023) The correlation between lightning and various weather parameters in the Padang monsoon system. Indonesian Journal of Electrical Engineering and Computer Science, 31 (1), 1-9
Holle R. L. (2014) Diurnal Variations of NLDN-Reported Cloud-to-Ground Lightning in the United States, Monthly Weather Review, 1037-1052
Holle R. L., W. A. Brooks and K. L. Cummin (2016) Seasonal, Monthly, and Weekly Distributions of NLDN and GLD360 Cloud-to-Ground Lightning, Monthly Weather Review, 144(8), 2855–2870.
Holzworth R. H., M. P. McCarthy, J. B. Brundell, A. R. Jacobson and C. J. Rodger (2019) Global Distribution of Superbolts. Journal of Geophysical Research: Atmospheres, 124, 9996–10,005
Kotroni V. and K. Lagouvardos (2008) Lightning occurrence in relation to elevation, terrain slope, and vegetation cover in the Mediterranean. Journal of Geophysical Research, 113, D21118
Kundu A., S. S. Kundu, S. K. Sharma, M. Gogoi, T. Banik, A. Borgohain, R. Mahanta and A. Debnath (2023) The behavior of cloud base height over a hilly remote station of North-East India using ground-based remote sensing technique. Atmospheric Research, 282, 106512.
Lal D.M. and S. D. Pawar (2011) Effect of urbanization on lightning over four metropolitan cities of India, Atmospheric Environment, 45(1), 191-196
LEE L.S. (2011) Does lightning always strike the tallest object? Hong Kong Observatory web. https://www.hko.gov.hk/en/education/weather/thunderstorm-and-lightning/00013-does-lightning-always-strike-the-tallest-object.html. Accessed on 22 September 2024.
NOAA National Severe Storms Laboratory (http://www.nssl.noaa.gov)
Open-Meteo Homepage, https://open-meteo.com
Oulkar S., D. Singh, U. Saha and A. K. Kamra (2019) Distribution of lightning in relation to topography and vegetation cover over the dry and moist regions in the Himalayas. Journal of Earth System Science, 128, 180(1-17)
Perez-Invernon F.J., F. J. Gordillo-Vazquez, H. Huntrieser and P. Jockel (2023) Variation of lightning-ignited wildfire patterns under climate change. Nature Communications 14, 739
Price C. and D. Rind (1992) A Simple Lightning Parameterization for Calculating Global Lightning Distributions. Journal of Geophysical Research,97(D9), 9919-9933
Raheem B., E. Ogbuju and F. Oladipo (2023) Development of a Lightning Prediction Model Using Machine Learning Algorithm: Survey. Journal of Applied Artificial Intelligence, 4(1), 45-56
Rakov V.A. and M. A. Uman (2003) Lightning: Physics and Effects, Cambridge University Press, Cambridge, U.K. 687 pp, ISBN 0-521-58327-6
Ranalkar M. (2009) Chaudhari H.S.: Seasonal variation of lightning activity over the Indian subcontinent. Meteorology and Atmospheric Physics, 104, 125–134
Rocque M. N., W. Deierling W., K. L. Rasmussen, R. I. Albrecht and B. Medina (2024). Lightning characteristics associated with storm modes observed during RELAMPAGO. Journal of Geophysical Research: Atmospheres, 129,e2023JD039520. https://doi.org/10.1029/2023JD039520
Romps D. M., J. T. Seeley, D. Vollaro and J. Molinari (2014) Projected increase in lightning strikes in the United States due to global warming. Science 346(6211):851–854. https:// doi. org/ 10. 1126/ science. 1259100.
Sharma A., A. Mitra, V. Vasan and R. Govindarajan (2020) Spatio-temporal relationships between rainfall and convective clouds during Indian monsoon through a discrete lens. International Journal of Climatology, 41(2), 1351-1368
Sharma S., A. Dass, A. K. Mishra, S. Singh and K. Kumar (2022) A decadal climatology of cloud vertical structure over the Indo-Gangetic Plain using radiosonde and radar observations. Atmospheric Research, 266, 105949
Singh D., P. S. Buchunde, R. P. Singh, A. Nath, S. Kumar, R. N. Ghodpage (2014) Lightning and convective rain study in different parts of India. Atmospheric Research, 137, 35-48
Singh U., M. Rizwan, M. Alaraj and I. Alsaidan (2021) A machine learning-based gradient boosting regression approach for wind power production forecasting: A step towards smart grid environments. Energies, 14(16), 5196
Taori A., A. Suryavanshi, B. Gharai and M. V. R. Seshasai (2021) Atmospheric Lightning as Essential Climate Variable (ECV) and Its Availability Over India Using NRSC/ISRO Lightning Detection Sensor Network. Preprints, 2021120183. doi:10.20944/preprints202112.0183.v1.
Taori A., A. Suryavanshi, S. Pawar and M. V. R. Seshasai (2022) Establishment of lightning detection sensors network in India: generation of essential climate variable and characterization of cloud-to-ground lightning occurrences. Natural Hazards 111, 19-32(2022).
Taori A., A. Suryavanshi, R. V. Bothale (2023) Cloud-to-ground lightning occurrences over India: seasonal and diurnal characteristics deduced with ground-based lightning detection sensor network (LDSN). Natural Hazards 116, 4037–4049.
Taori A., A. Suryavanshi, R. Goenka, D. Venkatesh and G. S. Rao (2024) Inter-comparison of Worldwide Lightning Location Network (WWLLN) and Lightning Detection Sensor Network (LDSN) data over India. Journal of Atmospheric and Solar-Terrestrial Physics, 261, 106286
Shi T., Y. Yang, L. Liu, Y. Tian, Z. Zheng, Y. Huang, Z. Xiao, Y. Wang, Y. Wang and G. Lu (2023) Spatiotemporal patterns of long series of cloud-to-ground lightning in Beijing and its cause. Urban Climate, 49,101480 (2023).
Shi T., G. Lu, X. Wen, L. Liu and P. Qi (2024) A Systematic Review of the Potential Influence of Urbanization on the Regional Thunderstorm Process and Lightning Activity, Atmosphere, 15(3), 374 (2024).
Wang X., K. Hu, Y. Wu and W. A. Zhou (2023) Survey of Deep Learning-Based Lightning Prediction. Atmosphere, 14, 1698
Williams E.R (1992) The Schumann Resonance: A Global Tropical Thermometer. Science, 256(5060), 1184-1187
Wu M., Z. Sun and Q. Tang (2020) The Variation of Lightning Current Parameters with Altitude in Shandong Region. IOP Conf. Series: Earth and Environmental Science 598, 012084
Yair Y. (2018) Lightning hazards to human societies in a changing climate, Environmental Research Letters 13, 123002
XGBoost Basics, xgboost.com
KDE Estimation, https://jakevdp.github.io/PythonDataScienceHandbook/05.13-kernel-density-estimation.html
PCA Basics, https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Journal of Geomatics

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.