Morpho-tectonic Analysis of an Upstream Sub-basin of the Cauvery River from Bhagamandala to Shivanasamudra using Geomorphic Indices using GIS
DOI:
https://doi.org/10.58825/jog.2025.19.2.202Keywords:
Geomorphic indices, Hypsometry, Fault, Tectonics, Cauvery river, Morpho-tectonicsAbstract
The Cauvery sub-basin, with an elevation of 2029 meters, is a mountain range that has been uplifted during the Cretaceous period and is bordered by the Western Ghats. The two northern mountain fronts and the southern front of the Cauvery sub-basin are defined by faults near the origin point (catchment area). We conducted a morpho-tectonic analysis by assessing the properties of geomorphic indices to uncover variations in rock uplift. In particular, the study contrasts the northern and southern mountain fronts' valley height to floor ratio, area-height correlations (hypsometric curve), and mountain front sinuosity (Smf). The high land in the sub-basin and key faults in the northern part of the Western Ghats (with an average height of approximately 2029 meters), indicate the uplift of both geomorphic units as part of a single extensive crustal block. The asymmetry factor indicates that there are imbalances in the Cauvery River, with an increased slope toward the sub-basin's left side. Transverse topographic symmetry also suggests that the sub-basin experiences tectonic activity at both the source and endpoint, where Shivanasamudra falls is located. Likewise, other morpho-tectonic indices reinforce the observation that both the starting and ending points are tectonically active. Finally, river profiles reveal that the sub-basin's left section displays the most notable river entrenchment, likely due to uplift. Our geomorphic assessment indicates that the Western Ghats within the Cauvery sub-basin region exhibit tectonic activity, characterized by a series of faults along the mountain's leading edge. The presence of Pseudotachylites connected to the fault system indicates that neo-tectonic processes also have an impact on the Shivanasamudra falls, which are situated at the end of the research region.
References
Agrawal, N., L. Gupta and J. Dixit (2022). Geospatial assessment of active tectonics using SRTM DEM-based morphometric approach for Meghalaya, India. All Earth, 34(1), 39–54.
Ahmad, S., A. Alam, B. Ahmad, A. Afzal, M. I. Bhat, M. S. Bhat and H. F. Ahmad (2018). ‘.Tectono-geomorphic indices of the Erin basin, NE Kashmir valley, India. Journal of Asian Earth Sciences, 151, 16–30.
Anand, A. K. and S. P. Pradhan (2019). Assessment of active tectonics from geomorphic indices and morphometric parameters in part of Ganga basin. Journal of Mountain Science, 16(8), 1943–1961.
Azañón, J. M., A. Azor, J. V. Pérez-Peña and J. M. Carrillo (2005). Late Quaternary large-scale rotational slides induced by river incision: The Arroyo de Gor area (Guadix basin, SE Spain). Geomorphology, 69, 152–168.
Azor, A., E. A. Keller and R. S. Yeats (2002). Geomorphic indicators of active fold growth: South Mountain–Oak Ridge anticline, Ventura basin, southern California. Geological Society of America Bulletin, 114(6), 745–753.
Bhattacharya, F., B. K. Rastogi and G. C. Kothyari (2013). Morphometric evidence of seismicity around Wagad and Gedi Faults, eastern Kachchh, Gujarat. Journal of the Geological Society of India, 81, 113–121.
Bhattacharjee, N. and S. P. Mohanty (2020). GIS-based approach for the measurement of variability in tectonomorphic signatures using DEM data: A case study from the Habo Dome in the Kachchh area, India. Environmental Earth Sciences, 79(18), 1–26.
Bishop, P. (2007). Long-term landscape evolution: Linking tectonics and surface processes. Earth Surface Processes and Landforms, 32, 329–365.
Borgohain, S., J. D. Das, A. K. Saraf, G. Singh and S. S. Baral (2017). Structural controls on topography and river morphodynamics in Upper Assam Valley, India. Geodinamica Acta, 29(1), 62–69. https://doi.org/10.1080/09853111.2017.1313090
Brookfield, M. E. (1998). The evolution of the great river systems of southern Asia during the Cenozoic India–Asia collision: Rivers draining southwards. Geomorphology, 22(3–4), 285–312.
Bull, W. B. (1977). Tectonic geomorphology of the Mojave Desert, California. U.S. Geological Survey Contract Report 14-0-001-G-394, Office of Earthquakes, Volcanoes, and Engineering, Menlo Park, California, pp. 188.
Bull, W. B. and L. D. McFadden (1977). Tectonic geomorphology north and south of the Garlock fault, California. In Doehring, D. O. (ed.) Geomorphology in Arid Regions: Proceedings of the Eighth Annual Geomorphology Symposium. State University of New York, Binghamton, NY, pp. 115–138.
Bull, W. B. (2007). Tectonic Geomorphology of Mountains: A New Approach to Paleoseismology. Wiley-Blackwell, Oxford, pp. 328.
Bull, W. B. (2008). Tectonic Geomorphology of Mountains: A New Approach to Paleoseismology. John Wiley and Sons.
Bull, W. B. (2009a). Tectonically Active Landscapes. Wiley-Blackwell, Oxford, pp. 326.
Bull, W. B. (2009b). Geomorphic Responses to Climatic Change. Blackburn Press, New Jersey, pp. 326.
Burbank, D. W. and R. S. Anderson (2001). Tectonic Geomorphology. Blackwell Science. 254–356.
Cannon, M. (1976). Blind deconvolution of spatially invariant image blurs with phase. IEEE Transactions on Acoustics, Speech, and Signal Processing, 24(1), 58–63.
Chadwick, B., V. N. Vasudev, G. V. Hegde and A. P. Nutman (2007). Structure and SHRIMP U/Pb zircon ages of granites adjacent to the Chitradurga schist belt: Implications for Neoarchaean convergence in the Dharwar craton, southern India. Journal of the Geological Society of India, 69.
Cheng, W., N. Wang, M. Zhao and S. Zhao (2016). Relative tectonics and debris flow hazards in the Beijing Mountain area from DEM-derived geomorphic indices and drainage analysis. Geomorphology, 257, 134–142.
Clark, M. K., L. M. Schoenbohm, L. H. Royden, K. X. Whipple, B. C. Burchfiel, X. Zhang, W. Tang, E. Wang and L. Chen (2004). Surface uplift, tectonics, and erosion of eastern Tibet from large-scale drainage patterns. Tectonics, 23.
Cox, R. T. (1994). Analysis of drainage-basin symmetry as a rapid technique to identify areas of possible Quaternary tilt-block tectonics: An example from the Mississippi Embayment. Geological Society of America Bulletin, 106(5), 571–581.
Das, J. D. and A. K. Saraf (2007). Remote sensing in mapping of Brahmaputra/Jamuna River channel pattern and its relation to various landforms and tectonic environment. International Journal of Remote Sensing, 28, 3619–3631.
Dehbozorgi, M., M. Pourkermani, M. Arian, A. A. Matkan, H. Motamedi and A. Hosseiniasl (2010). Quantitative analysis of relative tectonic activity in the Sarvestan area, central Zagros, Iran. Geomorphology, 121(3–4), 329–341.
El Hamdouni, R., C. Irigaray, T. Fernández, J. Chacón and E. A. Keller (2008). Assessment of relative active tectonics, southwest border of the Sierra Nevada (southern Spain). Geomorphology, 96(1–2), 150–173.
England, P. and P. Molnar (1990). Surface uplift, uplift of rock, and exhumation of rocks. Geology, 18, 1173–1177.
Hack, J. T. (1973). Stream-profile analysis and stream-gradient index. Journal of Research of the U.S. Geological Survey, 1(4), 421–429.
Hancock, G. S. and R. S. Anderson (2002). Numerical modeling of fluvial strath-terrace formation in response to oscillating climate. Geological Society of America Bulletin, 114, 1131–1142.
Hare, P. W. and T. W. Gardner (1985). Geomorphic indicators of vertical neotectonism along converging plate margins, Nicoya Peninsula, Costa Rica. in Morisawa, M. and Hack, J. T. (eds.) Tectonic Geomorphology: Proceedings of the 15th Annual Binghamton Geomorphology Symposium. Allen and Unwin, Boston, pp. 75–104.
Hetzel, R., S. Niedermann, S. Ivy-Ochs, P. W. Kubik, M. X. Tao and B. Gao (2002). Ne-21 versus Be-10 and Al-26 exposure ages of fluvial terraces: The influence of crustal Ne in quartz. Earth and Planetary Science Letters, 201, 575–591.
Jackson, J., R. Van Dissen and K. Berryman (1998). Tilting of active folds and faults in the Manawatu region, New Zealand: Evidence from surface drainage patterns. New Zealand Journal of Geology and Geophysics, 41, 377–385.
Janardhan, A. S., R. C. Newton and E. C. Hansen (1982). The transformation of amphibolite facies gneiss to charnockite in southern Karnataka and northern Tamil Nadu, India. Contributions to Mineralogy and Petrology, 79, 130–149.
Kale, V. S., S. Sengupta, H. Achyuthan and M. K. Jaiswal (2014). Tectonic controls upon Kaveri River drainage, cratonic Peninsular India: Inferences from longitudinal profiles, morphotectonic indices, hanging valleys and fluvial records. Geomorphology, 227, 153–165.
Keller, E. A. (1986). Investigation of active tectonics: Use of surficial earth processes. Active Tectonics, 1, 136–147.
Keller, E. A., D. B. Seaver, D. L. Laduzinsky, D. L. Johnson and T. L. Ku (2000). Tectonic geomorphology of active folding over buried reverse faults: San Emigdio Mountain front, southern San Joaquin Valley, California. Geological Society of America Bulletin, 112(1), 86–97.
Keller, E. A. and N. Pinter (eds.) (2002). Active Tectonics: Earthquakes, Uplift, and Landscape, 2nd edn. Prentice Hall, Upper Saddle River, N.J., pp. 362.
Martín-Rojas, I., M. Martín-Martín and C. Sanz de Galdeano (2001). Índices geomorfológicos de los frentes montañosos del borde occidental de Sierra Nevada (Granada — España). In Pelaez Montilla, J. and López Garrido, A. C. (eds.) La Cuenca de Granada, in Sanz de Galdeano, C. (ed.) Estructura, Tectónica Activa, Sismicidad, Geomorfología y Dataciones Existentes. Universidad de Granada, Granada, pp. 59–66.
Mayer, L. (1990). Introduction to Quantitative Geomorphology. Prentice Hall, Englewood Cliffs, NJ.
Miller, V. C. (1953). A quantitative geomorphic study of drainage basin characteristics in the Clinch Mountain area, Virginia and Tennessee. Technical Report No. 3, Columbia University, New York.
Mishra, R. L., R. Jayangondaperumal and H. Sahoo (2016). Active tectonics of Dikrong Valley, northeast Himalaya, India: Insight into the differential uplift and fold propagation from river profile analysis. Himalayan Geology, 37(2), 85–94.
Molin, P., F. J. Pazzaglia and F. Dramis (2004). Geomorphic expression of active tectonics in a rapidly-deforming forearc, Sila massif, Calabria, southern Italy. American Journal of Science, 304(7), 559–589.
Mueller, J. E. (1968). An introduction to the hydraulic and topographic sinuosity indexes. Annals of the Association of American Geographers, 58(2), 371–385.
Nutman, A. P., B. Chadwick, M. Ramakrishnan and M. N. Viswanatha (1992). SHRIMP U-Pb ages of detrital zircon in Sargur supracrustal rocks in western Karnataka, southern India. Journal of the Geological Society of India, 39(5), 367–374.
Pei, Y., H. Qiu, S. Hu, D. Yang, Y. Zhang, S. Ma and M. Cao (2021). Appraisal of tectonic-geomorphic features in the Hindu Kush-Himalayas. Earth and Space Science, e2020EA001386.
Pérez-Peña, J. V., J. M. Azañón and A. Azor (2009). CalHypso: An ArcGIS extension to calculate hypsometric curves and their statistical moments – Applications to drainage basin analysis in SE Spain. Computers and Geosciences, 35, 1214–1223.
Peucat, J. J., H. Bouhallier, C. M. Fanning and M. Jayananda (1995). ‘Age of the Holenarsipur greenstone belt: Relationships with the surrounding gneisses (Karnataka, South India). The Journal of Geology, 103(6), 701–710.
Raj, R. (2012). Active tectonics of NE Gujarat (India) by morphometric and morphostructural studies of Vatrak River basin. Journal of Asian Earth Sciences, 50, 66–78.
Ramírez-Herrera, M. T. (1998). Geomorphic assessment of active tectonics in the Acambay Graben, Mexican Volcanic Belt. Earth Surface Processes and Landforms, 23(4), 317–332.
Salvany, J. M. (2004). Tilting neotectonics of the Guadiamar drainage basin, SW Spain. Earth Surface Processes and Landforms, 29, 145–160.
Schumm, S. A. (1956). Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Geological Society of America Bulletin, 67(5), 597–646.
Schumm, S. A., J. F. Dumont and J. M. Holbrook (2000). Active Tectonics and Alluvial Rivers. Cambridge University Press.
Schoenbohm, L. M., K. X. Whipple, B. C. Burchfiel and L. Chen (2004). Geomorphic constraints on surface uplift, exhumation, and plateau growth in the Red River region, Yunnan Province, China. Geological Society of America Bulletin, 116, 895–909.
Sharma, S. and J. N. Sarma (2017). Application of drainage basin morphotectonic analysis for assessment of tectonic activities over two regional structures of northeast India. Journal of the Geological Society of India, 89(3), 271–280.
Shukla, D. P., C. S. Dubey, A. S. Ningreichon, R. P. Singh, B. K. Mishra and S. K. Singh (2014). GIS-based morpho-tectonic studies of Alaknanda river basin: A precursor for hazard zonation. Natural Hazards, 71(3), 1433–1452.
Silva, P. G., J. L. Goy, C. Zazo and T. Bardají (2003). Fault-generated mountain fronts in southeast Spain: Geomorphologic assessment of tectonic and seismic activity. Geomorphology, 50, 203–225.
Sinha, S. R. (2001). Neotectonic significance of longitudinal river profiles: An example from the Banas drainage basin, Rajasthan. Journal of the Geological Society of India, 58, 143–156.
Srikantappa, C., K. P. Narasimha and H. T. Basavarajappa (1992). Highly saline fluid inclusions in Chamundi granite, South India. Current Science, 62(3), 307–309.
Starkel, L. (2003). Climatically controlled terraces in uplifting mountain areas. Quaternary Science Reviews, 22, 2189–2198.
Subrahmanya, K. R. (1987). Evolution of the Western Ghats, India – A simple model. Journal of the Geological Society of India, 29(4), 446–449.
Swaminath, J. and M. Ramakrishnan (eds.) (1981). Early Precambrian Supracrustals of Southern Karnataka. Geological Survey of India Memoirs, 112, pp. 350.
Talukdar, M., T. Sarkar, P. Sengupta and D. Mukhopadhyay (2022). The Southern Granulite Terrane, India: The saga of over 2 billion years of Earth’s history. Earth-Science Reviews, 232.
Taylor, B. E., M. C. Wheeler and D. K. Nordstrom (1984). Stable isotope geochemistry of acid mine drainage: Experimental oxidation of pyrite. Geochimica et Cosmochimica Acta, 48(12), 2669–2678.
Vaidyanadhan, R. (1971). Evolution of the drainage of Cauvery in South India. Journal of the Geological Society of India, 12(1), 14–23.
Walcott, R. C. and M. A. Summerfield (2008). Scale dependence of hypsometric integrals: An analysis of southeast African basins. Geomorphology, 96(1–2), 174–186.
Watchman, A. L. and C. R. Twidale (2002). Relative and absolute dating of land surfaces. Earth-Science Reviews, 58, 1–49.
Wells, S. G., T. F. Bullard, T. M. Menges, P. G. Drake, P. A. Karas, K. I. Kelson, J. B. Ritter and J. R. Wesling (1988). Regional variations in tectonic geomorphology along segment convergent plate boundary, Pacific coast of Costa Rica. Geomorphology, 1, 239–265.
Zhang, T., S. Fan, S. Chen, S. Li and Y. Lu (2019). Geomorphic evolution and neotectonics of the Qianhe River Basin on the southwest margin of the Ordos Block, North China. Journal of Asian Earth Sciences, 176, 184–195.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Journal of Geomatics

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
