Temporal Gap Filling of Nighttime Light Composites

Authors

  • Nalin Sharma Uttarakhand State Council for Science And Technology (UCOST), Dehradun
  • Prasun Kumar Gupta Indian Institute of Remote Sensing
  • Prabhakar Alok Verma Indian Institute of Remote Sensing

DOI:

https://doi.org/10.58825/jog.2025.19.1.152

Keywords:

Nighttime light, DMSP-OLS, Deep Learning, LSTM

Abstract

The temporal nighttime light (NTL) data generated by DMSP-OLS sensors was discovered to have large gaps (missing values) over time. The research aims to provide a scientifically valid gap-filling mechanism for having consistent DMPS-OLS time series data (1992-2013) and predicting the historic NTL (1991-1985) for long-term studies. A deep learning neural network, Long Short Term Memory (LSTM) has been proposed in the study for temporal gap filling and historic NTL prediction. The developed LSTM model is being tested in a time distributed wrapper way having window size (3-7) for the temporal gap filling and prediction of the historic NTL. According to the accuracy evaluation, the developed model has a testing accuracy of R2 = 0.96 with a window size of 5. The historic population, Gross Domestic Product (GDP), and Electric Power Consumption per capita (EPC) data are utilized to validate the gap-filled and historic NTL. R2 = 0.91 w.r.t population, R2 = 0.71 w.r.t GDP, and R2 = 0.69 w.r.t EPC, is been found during the assessment of these parameters with the sum of light of the year (1985-2013). The historic & gap-filled NTL data can be used in various studies to monitor temporal development.

References

Agarwal P., D. Sahoo, Y. Parida, P. K. Ranjan and C. J. Roy (2023). Land use changes and natural disaster fatalities: Empirical analysis for India. Ecological Indicators, 154(March), 110525. https://doi.org/10.1016/j.ecolind.2023.110525

Aslam M. (2018). Design of sampling plan for exponential distribution under neutrosophic statistical interval method. IEEE Access, 6, 64153–64158. https://doi.org/10.1109/ACCESS.2018.2877923

Aufa B. Z., S. Suyanto and A. Arifianto (2020). Hyperparameter Setting of LSTM-based Language Model using Grey Wolf Optimizer. 2020 International Conference on Data Science and Its Applications, ICoDSA 2020. https://doi.org/10.1109/ICoDSA50139.2020.9213031

Bennie J., J. P. Duffy, T. W. Davies, M. E. Correa-Cano and K. J. Gaston (2015). Global trends in exposure to light pollution in natural terrestrial ecosystems. Remote Sensing, 7(3), 2715–2730. https://doi.org/10.3390/rs70302715

Combs C. L. and S. D. Miller (2023). A Review of the Far-Reaching Usage of Low-Light Nighttime Data. Remote Sensing, 15(3). https://doi.org/10.3390/rs15030623

Doll C. N. H. (2008). CIESIN Thematic Guide to Night-time Light Remote Sensing and its Applications. Earth Science, 1–41.

Elvidge C. D., K. E. Baugh, E. A. Kihn, H. W. Kroehl and E. R. Davis (1997). Mapping city lights with nighttime data from the DMSP Operational Linescan System. Photogrammetric Engineering and Remote Sensing, 63(6), 727–734.

George M. (2023). The Indian economy : The journey to real five trillion GDP and above. 4(2), 46–62.

Henderson J. V., A. Storeygard and D. N. Weil (2009). Nber Working Paper Series Measuring Economic Growth From Outer Space. National Bureau of Economic Research. http://www.nber.org/papers/w15199

Hsu F. C., K. E. Baugh, T. Ghosh, M. Zhizhin and C. D. Elvidge (2015). DMSP-OLS radiance calibrated nighttime lights time series with intercalibration. Remote Sensing, 7(2), 1855–1876. https://doi.org/10.3390/rs70201855

https://censusindia.gov.in/census.website/

https://data.worldbank.org/indicator/EG.USE.ELEC.KH.PC?locations=IN

https://data.worldbank.org/indicator/NY.GDP.MKTP.CD?locations=IN

https://eogdata.mines.edu/wwwdata/dmsp/v4composites_rearrange/

Jindal M., P. K. Gupta and S. K. Srivastav (2022). Improved DMSP nighttime light monthly products over India. International Journal of Remote Sensing, 00(00), 1–30. https://doi.org/10.1080/01431161.2022.2152758

Kiran Chand T. R., K. V. S. Badarinath, C.D. Elvidge and B. T. Tuttle (2009). Spatial characterization of electrical power consumption patterns over India using temporal DMSP-OLS night-time satellite data. International Journal of Remote Sensing, 30(3), 647–661. https://doi.org/10.1080/01431160802345685

Krishna Prasad V., Y. Kant, P. K. Gupta, C. D. Elvidge and K.V. S. Badarinath (2002). Biomass burning and related trace gas emissions from tropical dry deciduous forests of India: A study using DMSP-OLS data ground-based measurements. International Journal of Remote Sensing, 23(14), 2837–2851. https://doi.org/10.1080/ 01431160110109598

Ma T., C. Zhou, T. Pei, S. Haynie and J. Fan (2012). Quantitative estimation of urbanization dynamics using time series of DMSP/OLS nighttime light data: A comparative case study from China’s cities. Remote Sensing of Environment, 124, 99–107. https://doi.org/10.1016/j.rse.2012.04.018

Mukherjee S., S. K. Srivastav, P. K. Gupta, N. A. S. Hamm and V. A. Tolpekin (2017). An Algorithm for Inter-calibration of Time-Series DMSP/OLS Night-Time Light Images. Proceedings of the National Academy of Sciences India Section A - Physical Sciences, 87(4), 721–731. https://doi.org/10.1007/s40010-017-0444-8

Pandey B., P. K. Joshi and K. C. Seto (2013). Monitoring urbanization dynamics in india using DMSP/OLS night time lights and SPOT-VGT data. International Journal of Applied Earth Observation and Geoinformation, 23(1), 49–61. https://doi.org/10.1016/j.jag.2012.11.005

Pandey B., Q. Zhang and K. C. Seto (2017). Comparative evaluation of relative calibration methods for DMSP/OLS nighttime lights. Remote Sensing of Environment, 195, 67–78. https://doi.org/10.1016/j.rse.2017.04.011

Sahoo S., P. K. Gupta and S. K. Srivastav (2020). Comparative analysis between VIIRS-DNB and DMSP-OLS night-time light data to estimate electric power consumption in Uttar Pradesh, India. International Journal of Remote Sensing, 41(7), 2565–2580. https://doi.org/10.1080/01431161.2019.1693077

Selvin, R. Vinayakumar, E. A. Gopalakrishnan, V. K. Menon and K. P. Soman (2017). Stock price prediction using LSTM, RNN and CNN-sliding window model. 2017 International Conference on Advances in Computing, Communications and Informatics, ICACCI 2017, 2017-Janua, 1643–1647. https://doi.org/10.1109/ICACCI.2017.8126078

Shen X., B. Liu, Y. Zhou and J. Zhao (2020). Remote sensing image caption generation via transformer and reinforcement learning.

Sherstinsky A. (2020). Fundamentals of Recurrent Neural Network ( RNN ) and Long Short-Term Memory ( LSTM ) Network. 404(March), 1–43.

Staudemeyer R. C. and E. R. Morris (2019a). a tutorial into Long Short-Term Memory Recurrent Neural Networks. 1–42.

Staudemeyer R. C. and E. R. Morris (2019b). Understanding LSTM -- a tutorial into Long Short-Term Memory Recurrent Neural Networks. 1–42. http://arxiv.org/abs/1909.09586

Tan M., X. Li, S. Li, L. Xin, X. Wang, Q. Li, W. Li, Y. Li and X. Xiang (2018). Modeling population density based on nighttime light images and land use data in China. Applied Geography, 90(January 2017), 239–247. https://doi.org/10.1016/j.apgeog.2017.12.012

Taneja S., M. Bhatnagar, P. Kumar and R. Rupeika-Apoga (2023). India’s Total Natural Resource Rents (NRR) and GDP: An Augmented Autoregressive Distributed Lag (ARDL) Bound Test. Journal of Risk and Financial Management, 16(2). https://doi.org/10.3390/jrfm16020091

Wang Q., Y. Guo, L. Yu and P. Li (2017). Earthquake Prediction based on Spatio-Temporal Data Mining : An LSTM Network Approach. 6750(c), 1–11. https://doi.org/10.1109/TETC.2017.2699169

Xu T., D. Zhou and Y. Li (2022). Integrating ANNs and Cellular Automata – Markov Chain to Simulate Urban Expansion with Annual Land Use Data. 1–15.

Zhu Y., C. Geiß, E. So and Y. Jin (2021). Multitemporal Relearning With Convolutional LSTM Models for Land Use Classification. 14, 3251–3265. https://doi.org/10.1109/JSTARS.2021.3055784

Downloads

Published

2025-04-30

How to Cite

[1]
N. Sharma, Prasun Kumar Gupta, and Prabhakar Alok Verma, “Temporal Gap Filling of Nighttime Light Composites”, Journal of Geomatics, vol. 19, no. 1, pp. 29–38, Apr. 2025.