A Comparative use of UAV and Satellite Images in discrimination and estimation of cashew plantation areas

Authors

  • Alain Abi Kaberou Laboratoire des Sciences Végétales, Horticoles et Forestières (LaSVHF)

DOI:

https://doi.org/10.58825/jog.2024.18.2.147

Keywords:

cashew plantations, UAV, Landsat, Sentinel-2, Random Forest, data fusion

Abstract

Cashew plantations generate significant interest in Benin due to their high socioeconomic value for the population. A thorough understanding of the spatial distribution of these plantations is crucial for comprehending their environmental and socioeconomic impacts. In this study, various types of multi-sensor imagery were compared to assess each sensor's capabilities in mapping plantation areas. The study was conducted in the Savè commune, a major industrial cashew-producing region. Multispectral sensors from Landsat-8 Operational Land Imager (OLI), Sentinel-2A, and UAV multispectral platforms, along with ground surveys, were fused and classified using the Random Forest algorithm. The study results allowed for the assessment of uncertainties associated with different platforms in detecting cashew plantations in the test area. Classification using Random Forest algorithms on UAV, Sentinel, and Landsat platform images yielded overall accuracies of 83%, 65%, and 48%, respectively. Producer and user accuracies were 94% and 75% for the UAV platform, 98% and 71% for the Sentinel platform, and 91% and 77% for the Landsat platform in cashew tree detection. This study demonstrates the complementarity among various platforms in detecting and mapping cashew plantations.

References

ACA. (2012). Annual report 2011.

Akoguhi, P. N., Dibi, H. N., Godo, M. H., Adja, G. M., & Kouamé, F. K. (2022). Évaluation des méthodes de classifications dirigées (spectrale et orientée objet) sur les images satellitaires à THRS: Cas de la cartographie du tissu urbain de la commune de Cocody et d’Attécoubé (Abidjan, Côte d’Ivoire). VertigO, (Volume 22 numéro 3). https://doi.org/10.4000/vertigo.36548

Alavipanah, S. K., Ghazanfari, K., & Khakbaz, B. (2010). Remote Sensing and Image understanding as Reflected in Poetical Literature of Iran. http://www.earsel.org/symposia/2010-symposium-Paris/Proceedings/EARSeL-Symposium-2010_1-02.pdf

Alvarez-Vanhard, E., Corpetti, T., & Houet, T. (2021). UAV & satellite synergies for optical remote sensing applications: A literature review. Science of Remote Sensing, 3, 100019. https://doi.org/10.1016/j.srs.2021.100019

Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324

Chen, Yangbo, Dou, P., & Yang, X. (2017). Improving Land Use/Cover Classification with a Multiple Classifier System Using AdaBoost Integration Technique. Remote Sensing, 9(10), 1055. https://doi.org/10.3390/rs9101055

Chen, Yujia, & Tian, S. (2020). Comparison of pixel- and object-based image analysis for tea plantation mapping using hyperspectral Gaofen-5 and synthetic aperture radar data. Journal of Applied Remote Sensing, 14(04). https://doi.org/10.1117/1.JRS.14.044516

Daughtry, G. S. T., McmurtreyIII, J., & Wallthall, C. L. (2005). Evaluation of Digital Photography from Model Aircraft for Remote Sensing of Crop Biomass and Nitrogen Status, 356–378.

Deshayes, M. (2008). Caractéristiques spectrales des principaux composants de la surface terrestre. Cours pour Mastère SILAT presented at the Module “Télédétection: Principes de base,” UMR TETIS CEMAGREF-CIRAD-ENGREF.

Dong, J., Xiao, X., Chen, B., Torbick, N., Jin, C., Zhang, G., & Biradar, C. (2013). Mapping deciduous rubber plantations through integration of PALSAR and multi-temporal Landsat imagery. Remote Sensing of Environment, 134, 392–402. https://doi.org/10.1016/j.rse.2013.03.014

Goudet, M. (2008). Estimation par télédétection de la ressource forestière sur le département du Var (Mémoire de fin d’Etude de Master) (p. 96). Paris: Agro-Paris-Tech, Engref. https://infodoc.agroparistech.fr/doc_num.php?explnum_id=3342

Hagen, S. C., Heilman, P., Marsett, R., Torbick, N., Salas, W., Van Ravensway, J., & Qi, J. (2012). Mapping Total Vegetation Cover Across Western Rangelands With Moderate-Resolution Imaging Spectroradiometer Data. Rangeland Ecology & Management, 65(5), 456–467. https://doi.org/10.2111/REM-D-11-00188.1

Immitzer, M., Atzberger, C., & Koukal, T. (2012). Tree Species Classification with Random Forest Using Very High Spatial Resolution 8-Band WorldView-2 Satellite Data. Remote Sensing, 4(9), 2661–2693. https://doi.org/10.3390/rs4092661

Karlson, M., Ostwald, M., Reese, H., Sanou, J., Tankoano, B., & Mattsson, E. (2015). Mapping Tree Canopy Cover and Aboveground Biomass in Sudano-Sahelian Woodlands Using Landsat 8 and Random Forest. Remote Sensing, 7(8), 10017–10041. https://doi.org/10.3390/rs70810017

Kémeuzé, V. A., Mapongmetsem, P. M., Tientcheu, M. A., Nkongmeneck, B.-A., & Jiofack, R. B. (2012). Boswellia dalzielii Hutch: State of the stand and traditional use in the Mbé area. Sécheresse, 23(4), 278–283. https://doi.org/10.1684/sec.2012.0365

Kosal, K. (2020). Contribution de l’imagerie dronique pour la caractérisation des paramètres biophysiques des cultures agricoles (Thèse de Doctorat). Université de Montréal Département de géographie, Faculté des arts et des sciences, Montréal.

Koskinen, J., Leinonen, U., Vollrath, A., Ortmann, A., Lindquist, E., d’Annunzio, R., et al. (2019). Participatory mapping of forest plantations with Open Foris and Google Earth Engine. ISPRS Journal of Photogrammetry and Remote Sensing, 148, 63–74. https://doi.org/10.1016/j.isprsjprs.2018.12.011

Lawrence, H., Wigneron, J.-P., Richaume, P., Novello, N., Grant, J., Mialon, A., et al. (2014). Comparison between SMOS Vegetation Optical Depth products and MODIS vegetation indices over crop zones of the USA. Remote Sensing of Environment, 140, 396–406. https://doi.org/10.1016/j.rse.2013.07.021

Liaw, A., & Wiener, M. (2002). Classification and regression by randomForest. https://cran.r-project.org/doc/Rnews/

Lisein, J., Michez, A., Claessens, H., & Lejeune, P. (2015). Discrimination of Deciduous Tree Species from Time Series of Unmanned Aerial System Imagery. PLOS ONE, 10(11), e0141006. https://doi.org/10.1371/journal.pone.0141006

Matese, A., Toscano, P., Di Gennaro, S., Genesio, L., Vaccari, F., Primicerio, J., et al. (2015). Intercomparison of UAV, Aircraft and Satellite Remote Sensing Platforms for Precision Viticulture. Remote Sensing, 7(3), 2971–2990. https://doi.org/10.3390/rs70302971

N’guessan, E., Dibi N’da, H., Bellan, M. F., & Blasco, F. (2008). Pression anthropique sur une réserve forestière en Côte d’Ivoire : Apport de la télédétection, 5 (4), 307–323.

Power, K., & Gillis, M. D. (2006). Inventaire forestier du Canada 2001. Victoria, B.C.: Centre de foresterie du Pacifique.

Queinnec, M., White, J. C., & Coops, N. C. (2021). Comparing airborne and spaceborne photon-counting LiDAR canopy structural estimates across different boreal forest types. Remote Sensing of Environment, 262, 112510. https://doi.org/10.1016/j.rse.2021.112510

Rege, A., Warnekar, S. B., & Lee, J. S. H. (2022). Mapping cashew monocultures in the Western Ghats using optical and radar imagery in Google Earth Engine. Remote Sensing Applications: Society and Environment, 28, 100861. https://doi.org/10.1016/j.rsase.2022.100861

Rouse, J., Haas, J., Schell, J., & Deering, D. (1974). Monitoring vegetation systems in the Great Plains with ERTS. In Proceedings of the Third ERTS Symposium, . 309-317.

Saadou, M. (1999). Evaluation de la biodiversité biologique au Niger : éléments constitutifs de la biodiversité végétale. Conseil National de l’Environnement pour un Développement Durable SE/CNEDD.

Song, W., Dolan, J., Cline, D., & Xiong, G. (2015). Learning-Based Algal Bloom Event Recognition for Oceanographic Decision Support System Using Remote Sensing Data. Remote Sensing, 7(10), 13564–13585. https://doi.org/10.3390/rs71013564

Tandjiékpon. (2010). Analyse de la chaine de valeur du secteur anacarde du Bénin.

Thapa, R. B., Watanabe, M., Motohka, T., & Shimada, M. (2015). Potential of high-resolution ALOS–PALSAR mosaic texture for aboveground forest carbon tracking in tropical region. Remote Sensing of Environment, 160, 122–133. https://doi.org/10.1016/j.rse.2015.01.007

Torbick, N., & Salas, W. (2015). Mapping agricultural wetlands in the Sacramento Valley, USA with satellite remote sensing. Wetlands Ecology and Management, 23(1), 79–94. https://doi.org/10.1007/s11273-014-9342-x

Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8(2), 127–150. https://doi.org/10.1016/0034-4257(79)90013-0

Wang, M., Zheng, Y., Huang, C., Meng, R., Pang, Y., Jia, W., et al. (2022). Assessing Landsat-8 and Sentinel-2 spectral-temporal features for mapping tree species of northern plantation forests in Heilongjiang Province, China. Forest Ecosystems, 9, 100032. https://doi.org/10.1016/j.fecs.2022.100032

Watts, J. D., Lawrence, R. L., Miller, P. R., & Montagne, C. (2009). Monitoring of cropland practices for carbon sequestration purposes in north central Montana by Landsat remote sensing. Remote Sensing of Environment, 113(9), 1843–1852. https://doi.org/10.1016/j.rse.2009.04.015

Whitcomb, J., Moghaddam, M., McDonalds, K., Podest, E., & Kellnorfer, J. (2009). Mapping vegetated wetlands of Alaska using L-band radar satellite imagery, 54–72.

Wilkes, P., Jones, S., Suarez, L., Mellor, A., Woodgate, W., Soto-Berelov, M., et al. (2015). Mapping Forest Canopy Height Across Large Areas by Upscaling ALS Estimates with Freely Available Satellite Data. Remote Sensing, 7(9), 12563–12587. https://doi.org/10.3390/rs70912563

Yin, L., Ghosh, R., Lin, C., Hale, D., Weigl, C., Obarowski, J., et al. (2023). Mapping smallholder cashew plantations to inform sustainable tree crop expansion in Benin. https://www.researchgate.net/publication/366821970_Mapping_smallholder_cashew_plantations_to_inform_sustainable_tree_crop_expansion_in_Benin

Zhang, J. (2010). Multi-source remote sensing data fusion: status and trends. International Journal of Image and Data Fusion, 1(1), 5–24. https://doi.org/10.1080/19479830903561035

Downloads

Published

2024-10-30

How to Cite

Abi Kaberou, A. (2024). A Comparative use of UAV and Satellite Images in discrimination and estimation of cashew plantation areas. Journal of Geomatics, 18(2), 71–81. https://doi.org/10.58825/jog.2024.18.2.147