Assessment of Bleaching Stress Vulnerability of Lakshadweep Islands using Google Earth Engine (GEE)

Authors

  • Divya Mhalaskar Indian Institute of Remote Sensing (IIRS,ISRO)
  • Nandini Ray Chaudhury
  • Chandra Mohan Bhatt

DOI:

https://doi.org/10.58825/jog.2024.18.2.135

Keywords:

Coral bleaching, SSTA, Degree heating week, Google earth engine, Lakshadweep

Abstract

Coral reefs, among the Earth’s most diverse and valuable ecosystems, face unprecedented challenges due to climate change. Coral bleaching is a phenomenon wherein corals lose their symbiotic zooxanthellae owing to various stressors, leading to a whitening effect of the coral tissues. In recent decades, climate change has intensified coral bleaching events. Multiple stressors, including elevated Sea Surface Temperature (SST), extreme irradiance levels, and various biotic and abiotic factors trigger bleaching events. Coral bleaching is primarily driven by thermal stress caused by elevated SSTs. Climate change has worsened bleaching’s frequency and intensity. Global bleaching events are often linked to planetary ocean-atmospheric circulation processes such as El Niño Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD).

This study focused on assessing the vulnerability of coral reefs in the Lakshadweep region of India from 2016 to 2023 using National Oceanic and Atmospheric Administration’s Climate Data Record Optimum Interpolation Sea Surface Temperature (NOAA CDR OISST) daily data. GOOGLE EARTH ENGINE (GEE) is a cloud computing platform which is used to collect and generate the base data for this study. The vulnerability assessment utilized two bleaching indices: SST anomaly and Degree Heating Week (DHW). Analysis of DHW data reveals that 2020 experienced the highest SST anomaly residence time due to IOD event of 2019, as compared to 2016 and 2023 which are known El Niño years. All Lakshadweep islands exhibited vulnerability, although in varying degrees across different areas. Based on the magnitude, intensity, and frequency of bleaching stress, the islands are categorized into different categories of vulnerability. This study identifies Baliyapaniyam, Cheriyam-Kalpeni and Suhelipar reefs as very highly vulnerable reefs in Lakshadweep. This study highlights the urgent need for monitoring and management measures to mitigate the impacts of climate change on coral reef ecosystems using spatial vulnerability patterns.

References

Change and Ocean Acidification: Challenges and Opportunities for Management and Policy’, Annual Review of Environment and Resources, 41, 59–81.

Arora M., N. Ray Chaudhury, A. Gujrati and R. C. Patel (2019a). ‘Bleaching stress on Indian coral reef regions during mass coral bleaching years using NOAA OISST data’, current science vol. 117, 242-250.

Arora M., K. De, N. Ray Chaudhury, M. Nanajkar, P. Chauhan and B. Pateriya (2022). ‘Climate Change Induced Thermal Stress Caused Recurrent Coral Bleaching over Gulf of Kachchh and Malvan Marine Sanctuary, West Coast of India’, In: ‘Climate Change in Asia and Africa - Examining the Biophysical and Social Consequences, and Society’s Responses’, Eds: John P. Tiefenbacher IntechOpen.

Arora M., A. Gujrati, N. Ray Chaudhury, P. Chauhan and R. C. Patel (2019b). ‘Assessment of coral reef thermal stress over India based on remotely sensed sea surface temperature’, Geocarto International, 36(7), 740–757.

Arthur R. (2000). Coral bleaching and mortality in three Indian reef regions during an El Niño southern oscillation event, Current Science, vol. 79, No. 12.

Avia L. Q. and I. Sofiati (2018). Analysis of El Niño and IOD Phenomenon 2015/2016 and Their Impact on Rainfall Variability in Indonesia, IOP Conference Series: Earth and Environmental Science, vol. 166, Institute of Physics Publishing.

Babu I., C. A. Riyas and Suresh Kumar (2019). Long-term variability of coral reef structure in Lakshadweep Archipelago’, In: CLIMATE CHANGE AND THE VULNERABLE INDIAN COAST, Eds: R Ramesh and J.R. Bhatt, pg. no.149-168.

Baker A. C., P. W. Glynn and B. Riegl (2008). ‘Climate change and coral reef bleaching: An ecological assessment of long-term impacts, recovery trends and future outlook’, Estuarine, Coastal and Shelf Science, 80(4), 435–471.

Barkley H. C., A. L. Cohen, N. R. Mollica, R. E. Brainard, H. E. Rivera, T. M. DeCarlo, G. P Lohmann, E. J. Drenkard, A. E. Alpert, C. W. Young, B. Vargas-Ángel, K. C. Lino, T. A. Oliver, K. R. Pietro and V. H. Luu (2018). ‘Repeat bleaching of a central Pacific coral reef over the past six decades (1960–2016)’, Communications Biology, 1(1).

Brown B. E. (1990). ‘Damage and recovery of coral reefs affected by El Nifio related seawater warming in the Thousand Islands, Indonesia’, Coral Reefs vol. 8, 163-170.

Claar D.C., L. Szostek, J. M. McDevitt-Irwin, J. J. Schanze and J. K. Baum (2018). ‘Global patterns and impacts of El Niño events on coral reefs: A meta-analysis’, PLoS ONE, 13(2).

De K., M. Nanajkar, M. Arora, M. Nithyanandan, S. Mote and B. Ingole (2022), ‘Application of remotely sensed sea surface temperature for assessment of recurrent coral bleaching (2014–2019) impact on a marginal coral ecosystem’, Geocarto International, 37(15), 4483–4508.

Dunne R. P., B. E. Brown, N. Phongsuwan and L. Putchim (2021). ‘The Indian Ocean Dipole and El Niño Southern Oscillation as major drivers of coral cover on shallow reefs in the Andaman Sea’, Global Change Biology, 27(14), 3312–3323.

Eakin C. M., H. P. A. Sweatman and R. E. Brainard (2019). ‘The 2014–2017 global-scale coral bleaching event: insights and impacts’, Coral Reefs, 38(4), 539–545.

https://earthobservatory.nasa.gov/images/151481/el-nino-returns

https://www.pmel.noaa.gov/elnino/what-is-el-nino

https://www.weather.gov/mhx/ensowhat.

Houk P., A. Yalon, S. Maxin, C. Starsinic, A. McInnis, M. Gouezo, Y. Golbuu and R. Woesik (2020), ‘Predicting coral-reef futures from El Niño and Pacific Decadal Oscillation events’, Scientific Reports, 10(1).

Hughes T. P., K. D. Anderson, S. R. Connolly, S. F. Heron, J. T. Kerry, J. M. Lough, A. H. Baird, J. K. Baum, M. L. Berumen,T. C. Bridge, D. C. Claar, C. M. Eakin, J. P. Gilmour, N. A. J. Graham, H. Harrison, J. P. A. Hobbs, A. S. Hoey, M. Hoogenboom, R. J. Lowe, M. T. Mcculloch, J. M. Pandolfi, M. Pratchett, V. Schoepf, G. Torda and S. K. Wilson (2018). Spatial and temporal patterns of mass bleaching of corals in the Anthropocene, Science, 359, 80-83.

Hughes T. P., J. T. Kerry, M. Álvarez-Noriega, J. G. Álvarez-Romero, K. D. Anderson, A. H. Baird, R. C. Babcock, M. Beger, D. R. Bellwood, R. Berkelmans, T. C. Bridge, I. R. Butler, M. Byrne, N. E. Cantin, S. Comeau, S. R. Connolly, G. S. Cumming, S. J. Dalton, G. Diaz-Pulido, C. M. Eakin, W. F. Figueira, J. P. Gilmour, H. B. Harrison, S. F. Heron, A. S. Hoey, J. P. A. Hobbs, M. O. Hoogenboom, E. V. Kennedy, C. Y. Kuo, J. M. Lough, R. J. Lowe, G. Liu, M. T. McCulloch, H. A. Malcolm, M. J. McWilliam, J. M. Pandolfi, R. J. Pears, M. S. Pratchett, V. Schoepf, T. Simpson, W. J. Skirving, B. Sommer, G. Torda, D. R. Wachenfeld, B. L. Willis and S. K. Wilson (2017). ‘Global warming and recurrent mass bleaching of corals’, Nature, 543(7645), 373–377.

Hussain A. and B. Ingole (2020). ‘Massive coral bleaching in the patchy reef of Grande Island, along the eastern Arabian Sea during the 2015/16 global bleaching event’, Regional Studies in Marine Science.

Kumar V., H. J. Chu and A. Anand (2024). ‘Impacts of Sea Surface Temperature Variability in the Indian Ocean on Drought Conditions over India during ENSO and IOD Events’, Journal of Marine Science and Engineering, 12,136.

Lough J. M., K. D. Anderson and T. P. Hughes (2018). ‘Increasing thermal stress for tropical coral reefs: 1871-2017’, Scientific Reports, 8(1).

Lu B., H. L. Ren, A. A. Scaife, J. Wu, N. Dunstone, D. Smith, J. Wan, R. Eade, C. MacLachlan and M. Gordon (2018). ‘An extreme negative Indian Ocean Dipole event in 2016: dynamics and predictability’, Climate Dynamics, 51(1–2), 89–100.

Mallik T. K. (2017). ‘Coral Atolls of Lakshadweep, Arabian Sea, Indian Ocean’, MOJ Ecology & Environmental Sciences, 2(2), 68-83.

Mohanty P. (2017). ‘Coral Bleaching Along Andaman Coast Due to Thermal Stress During Summer Months of 2016: A Geospatial Assessment’, American Journal of Environmental Protection, 6(1), 1-6.

Plass-Johnson, J.G., U. Cardini, N. Hoytema Van, E. Bayraktarov, I. Burghardt, M. S. Naumann and C. Wild (2015). ‘Coral bleaching’, Environmental Indicators, pp. 117–146, Springer, Netherlands.

Podestá G. P. and P. W. Glynn (1997), ‘Sea surface temperature variability in Panamá and Galápagos: Extreme temperatures causing coral bleaching’, Journal of Geophysical Research: Oceans, 102(C7), 15749–15759.

Porter S.N., K. J. Sink and M. H. Schleyer (2021). ‘The third global coral bleaching event on the marginal coral reefs of the southwestern Indian ocean and factors that contribute to their resistance and resilience’, Diversity, 13,464.

Qiu B., P. L. Colin and S. Chen (2021). ‘Time-Varying Upper Ocean Circulation and Control of Coral Bleaching in the Western Tropical Pacific’, Geophysical Research Letters, 48(14).

Sarma V. V. S. S. (2006). ‘The influence of Indian Ocean Dipole (IOD) on biogeochemistry of carbon in the Arabian Sea during 1997-1998’, Journal of Earth System Science, 115(4), 433–450.

Sully S., D. E. Burkepile, M. K. Donovan, G. Hodgson and R. Woesik (2019). ‘A global analysis of coral bleaching over the past two decades’, Nature Communications, 10(1).

Zhang Y. and Y. Du (2021). Extreme IOD induced tropical Indian Ocean warming in 2020, Geoscience Letters, 8(1).

Downloads

Published

2024-10-30

How to Cite

Mhalaskar, D., Nandini Ray Chaudhury, & Chandra Mohan Bhatt. (2024). Assessment of Bleaching Stress Vulnerability of Lakshadweep Islands using Google Earth Engine (GEE). Journal of Geomatics, 18(2), 42–54. https://doi.org/10.58825/jog.2024.18.2.135