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Abstract: This study evaluates different machine learning algorithms for land use and land cover classification using 

Sentinel-2 Level-1C data with 10-meter spatial resolution. The algorithms include Random Forest (RF), Classification 

and Regression Trees (CART), Support Vector Machines (SVM), Naive Bayes (NB), and Gradient Boosting (GTB). The 

classification was performed on the Google Earth Engine (GEE) platform. Results highlight variations in land cover 

classification among algorithms, with RF and CART identifying cropland as dominant, SVM indicating fallow land 

presence, NB revealing significant forest cover, and GTB emphasizing cropland importance. Accuracy assessment was 

performed to evaluate the performance of the algorithms, considering metrics such as producer accuracy, consumer 

accuracy, overall accuracy, and Kappa coefficient. SVM demonstrates the highest overall accuracy and agreement with 

reference data. The study contributes insights for land management and planning, and GEE proves valuable for LULC 

classification. 
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1. Introduction 

 

Land Use and Land Cover (LU/LC) classification is a 

pivotal aspect of understanding the dynamic changes 

occurring on Earth's surface. Over the years, these changes 

have been influenced by a multitude of factors, including 

urbanization, agricultural expansion, industrialization, and 

climate variations (Turner et al., 2015). Accurately 

mapping and monitoring these transformations are crucial 

for informed decision-making in fields such as urban 

planning, environmental management, and natural 

resource conservation (Foody et al., 2013). This paper 

aims to shed light on the evolution of LU/LC classification 

methodologies, highlighting the pivotal role of remote 

sensing technology and the recent advancements in 

machine learning algorithms. 

 

The advent of remote sensing technology has 

revolutionized the field of LU/LC classification. It has 

enabled researchers to collect and analyze vast amounts of 

data, providing a comprehensive view of Earth's surface 

across various temporal and spatial scales (Xie et al., 

2019). Remote sensing data, acquired through satellites 

such as Landsat, MODIS, and Sentinel, have become 

invaluable sources for extracting critical information about 

land cover and its changes over time (Roy et al., 2014; 

Wulder et al., 2016; Gómez et al., 2016). These datasets 

offer a rich and diverse source of information, facilitating 

detailed analysis and monitoring of LU/LC patterns. 

 

Over the past few decades, researchers have successfully 

harnessed the power of remote sensing imagery to create 

accurate and up-to-date LU/LC maps, capitalizing on its 

wide availability, comprehensive coverage, and ease of 

use (Stromann et al., 2019). However, generating such 

maps for large regions has presented challenges, including 

the need for substantial data storage, processing capacity, 

and diverse analytical approaches (Xie et al., 2019). 

Addressing these challenges led to the emergence of 

platforms like Google Earth Engine (GEE). 

 

Before the introduction of GEE, various platforms were 

employed for LU/LC mapping, each with its own set of 

limitations. For example, while some platforms offered 

extensive datasets, they often lacked the computational 

power required for efficient processing (Shelestov et al., 

2017; Pimple et al., 2018). Others provided robust 

processing capabilities but had limited access to high-

quality remote sensing data sources. These constraints 

hindered the ability to produce accurate and timely LU/LC 

maps. 

 

GEE was introduced as a game-changer in the realm of 

LU/LC mapping. This cloud-based platform seamlessly 

integrates an extensive collection of Earth observation data 

from various sources with high-performance computing 

services, enabling efficient processing of satellite imagery 

(Gorelick et al., 2017; Sidhu et al., 2018; Kolli et al., 

2020). GEE offers access to a wide array of freely 

available satellite imagery, including datasets from 

sources such as Landsat, Sentinel, and MODIS (Shelestov 

et al., 2017; Pimple et al., 2018). It provides user-friendly 

interfaces in JavaScript and Python, facilitating the 

development and implementation of customized 

algorithms for satellite imagery processing and LU/LC 

mapping. 

 

In light of these considerations, this study aims to leverage 

the power of GEE and conduct a comparative analysis of 

various machine learning algorithms for LU/LC 

classification using Sentinel-2 Level-1C data with a 10-

meter spatial resolution. The research focuses on 

elucidating how different algorithms capture LU/LC 

variations and contribute to the advancement of mapping 

techniques. It seeks to address the critical question of 

which machine learning algorithm achieves the highest 
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accuracy in LU/LC classification, offering valuable 

insights for land management, planning, and 

environmental monitoring. 

 

In this context, it is essential to explore and compare the 

performance of different machine learning algorithms in 

LU/LC classification (Level 1), with a focus on the area of 

interest in the present study, the Kolhapur City Region. By 

assessing the advantages and limitations of these 

algorithms, this research seeks to provide valuable insights 

for land management, planning, and environmental 

monitoring. 

 

Through this investigation, we intend to demonstrate not 

only the efficacy of machine learning algorithms but also 

the importance of platforms like GEE in harnessing the full 

potential of remote sensing technology for LU/LC 

classification in a dynamic world. 

 

 
Figure 1. Location of study area 

 

2. Study Area 

 

The study area selected for this research comprises the 

surrounding region of Kolhapur city, situated in the south-

western part of Maharashtra state, India. This region 

extends between 16° 37' 8'' to 16° 49' 4'' North latitude and 

74° 5' 45'' to 74° 22' 39'' East longitude (Figure.1), 

covering an approximate area of 662 km². 

 

Kolhapur city, renowned for its historical and cultural 

heritage, is strategically located on the southern bank of 

the Panchganga River within this study area. It serves as 

the central urban hub, experiencing rapid growth and 

urbanization. The choice of Kolhapur as the area of interest 

in this study is driven by its significance as a dynamically 

evolving urban center in the region. 

 

In addition to the urban and agricultural areas, the study 

area includes significant natural features such as forests, 

water bodies, and barren land. These natural areas play a 

vital role in biodiversity conservation and maintaining 

ecological balance by providing habitat for a diverse range 

of plant and animal species. 

 

The study area experiences distinct seasonal variations in 

rainfall, with the monsoon season typically extending from 

June to September. The annual average rainfall of this 

region is 1010mm. It is important to note that rainfall is a 

pivotal factor influencing land use and land cover 

dynamics in the region. It impacts agricultural practices, 

water availability, and natural ecosystems. 

 

Regarding the physiography of the study area, it includes 

a diverse range of landscapes, from urban and agricultural 

plains to natural features such as forests and water bodies. 

The rapid growth of Kolhapur city and the surrounding 

region contributes to the changing physiography, making 

it an ideal location for studying land use and land cover 

dynamics. 

 

3. Data and Methods 

 

The systematic flow of the research methodology is 

depicted in Figure 2, illustrating the sequential steps 

undertaken in the study. 

 

 
Figure 2. Research methodology 

 

3.1 Data 

The cloud-based GEE platform stores an extensive 

collection of Earth observation data (EOD) spanning over 

the past four decades. This vast dataset includes satellite 

images from platforms like Sentinel, Landsat, and 

MODIS, as well as other geospatial data such as climate 

and demographic information. Within the GEE platform, 

users have access to a wide range of EOD, including 

Sentinel data. This comprehensive data repository allows 

researchers to leverage a diverse array of satellite imagery 

and ancillary data to analyze and understand various 

aspects of the Earth's surface. 

 

In the present study, Sentinel-2B (MSI) Level-1C satellite 

imagery from 05-03-2023 was utilized. To ensure data 

quality, only datasets with minimal cloud cover, 

constituting less than 10 percent of the total data, were 
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selected for analysis. For image classification purposes, 

three specific bands, namely Green (B3), Red (B4), and 

Near-Infrared (B8), from the Sentinel-2 dataset were 

employed. These bands have a spatial resolution of 10 

meters, allowing for detailed and accurate classification of 

land use and land cover patterns within the study area.  

 

3.2 Sample Selection 

In supervised learning, training data plays a vital role, and 

a significant number of samples are typically required for 

most machine learning algorithms. However, obtaining 

accurate reference data from satellite imagery can be a 

challenging and complex task (Chi et al., 2008). The 

process of delineating and acquiring reference data 

involves identifying and labeling specific land cover 

classes within the satellite imagery, which can be a time-

consuming and labor-intensive process. 

 

In recent literature, the practice of utilizing separate 

training and testing datasets is widely adopted in the 

development of LULC classification models. Typically, a 

common ratio of 70% training data and 30% testing data is 

followed (Naceur et al., 2022; Huang et al., 2022; Wang et 

al., 2020). These reference sample points were generated 

based on high-resolution Google Earth images. For the 

current study, a total of six land cover classes were 

identified, and a total of 300 sample points were collected, 

with 50 sample points per class. Out of these, 35 sample 

points (Figure 3a) were designated for training the models, 

while the remaining 15 sample points (Figure 3b) were 

kept aside for the purpose of accuracy assessment. This 

practice ensures that the models are trained on a substantial 

amount of data, allowing them to learn the patterns and 

characteristics of the land cover classes. The testing 

dataset, comprising unseen data points, is used to evaluate 

the performance and generalization capability of the 

trained models. 

 

3.3 Methods for Classification 

The present study utilized the GEE platform to train 

classifiers for Sentinel-2 imagery by employing five 

different machine learning algorithms: Random Forest 

(RF), Classification and Regression Trees (CART), 

Support Vector Machine (SVM), Naive Bayes (NB), and 

Gradient Tree Boosting (GTB).  

 

CART is a binary decision classification tree algorithm 

developed by Breiman (Breiman et al., 1984). It is a 

popular machine learning algorithm that enables 

straightforward decision-making in logical if-then 

scenarios. CART is a decision tree-based algorithm that 

recursively splits the data based on selected features to 

create a tree structure for classification or regression tasks. 

CART is advantageous for its interpretability and 

simplicity in visualizing and understanding the decision-

making process. In the current study, the 

"ee.Classifier.smileCart" technique, GEE library, was 

employed to perform CART classification. 

 

RF is an ensemble learning algorithm that combines 

multiple decision trees to make predictions. It is widely 

recognized for its ability to handle high-dimensional data 

and capture complex relationships between features and 

classes. The algorithm was first proposed by Leo Breiman 

(Breiman, 2001). One of the main advantages of Random 

Forest is its ability to reduce overfitting and improve 

generalization. In RF, the number of parameters and trees 

are two important factors that significantly impact the 

performance of the algorithm. These parameters are user-

defined and can be adjusted based on the specific problem 

and dataset. The literature suggests that the optimal 

number of trees in a Random Forest typically ranges from 

100 to 500 (Belgiu & Dragu, 2016). Having a larger 

number of trees can improve the model's accuracy, but 

there is a diminishing return as the number of trees 

increases. In the present study, 300 trees were selected as 

a compromise between computational efficiency and 

achieving a sufficiently accurate classification. In the 

current study, “ee.Classifier. smileRandomForest” 

technique as a GEE library, was employed to perform RF 

classification. 

 

 
Figure 3. Training Samples (a) Testing Samples (b) 

 

SVM is a machine learning technique that leverages the 

statistical learning theorem to identify an optimal higher-

dimensional space by mapping the original input space. 

SVM finds an optimal hyperplane to separate different 

classes by maximizing the margin between them. This 

technique was initially introduced by Vapnik (Vapnik, 

1995) and further developed by Cortes and Vapnik (Cortes 

& Vapnik, 1995) in the same year. The main parameters 

for selecting support vectors are the cost parameter C, 

Gamma, and kernel functions (Hsu et al., 2003). SVM 

offers several advantages for LULC classification. It can 

effectively handle non-linear relationships between input 

features and land cover classes by utilizing kernel 
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functions. In the current study, “ee.Classifier.libsvm” 

technique as a GEE library, was employed to perform 

SVM classification. 

NB is a probabilistic classifier that assumes independence 

among features given the class and calculates the 

probability of each class given the input features using 

Bayes' theorem. Despite its simplicity, NB can perform 

well in various classification tasks, especially when the 

independence assumption holds reasonably well (John & 

Langley, 1995). NB is computationally efficient and can 

handle large datasets with high-dimensional feature 

spaces. It remains a popular choice for classification tasks, 

including LULC classification, due to its computational 

efficiency and effectiveness in certain scenarios. In the 

present study, “ee.Classifier.smileNaiveBayes” technique 

as a GEE library, was employed to perform NB 

classification. 

 

GTB is a machine learning algorithm proposed by Jerome 

Friedman (Friedman, 1999). GTB is a boosting algorithm 

that combines multiple weak classifiers, usually decision 

trees, to create a strong ensemble model. GTB iteratively 

adds new trees to correct the errors made by previous trees, 

resulting in improved predictive accuracy. GTB is 

particularly effective in handling complex relationships 

and can capture non-linear interactions between features. 

In the present study, 

“ee.Classifier.smileGradientTreeBoost” technique as a 

GEE library, was employed to perform GTB classification. 

 

3.4 Accuracy Assessment 

Accuracy assessment is an essential step in evaluating the 

performance of LULC classification models. In this study, 

several metrics were used to assess the accuracy of the 

classification results, including producer accuracy, 

consumer accuracy, overall accuracy and Kappa 

coefficient. A total of 90 samples, with 15 samples for each 

class, were utilized for accuracy assessment purposes. 

These metrics allow for a comprehensive evaluation of the 

classification performance and provide insights into the 

reliability and effectiveness of the LULC classification 

models. 

 

4. Result and Discussion 

 

4.1 LULC Classification using GEE 

This study investigated the performance of different 

machine learning techniques for land use and land cover 

(LULC) classification using Sentinel-2 Level-1C data with 

a spatial resolution of 10 meters. Figure 4 demonstrate how 

machine learning algorithms such as RF, CART, SVM, 

NB and GTB were used for the classification of LULC 

maps for 2023 on the GEE platform. The LULC 

classification focused on six major classes: settlement, 

cropland, fallow land, waterbodies, forest and barren land. 

 

The RF classification revealed that cropland occupied a 

significant land area of 266 square kilometers, accounting 

for 40% of the total area. This highlighted the agricultural 

dominance in the study area. However, compared to the 

other algorithms, RF had the second lowest land area for  

cropland. Waterbodies accounted for only 8 square 

kilometers (1% of the total area), indicating limited water 

resources in the study area. The CART classification 

showed an even larger land area dominated by cropland, 

covering 371 square kilometers (56% of the total area). 

This result further emphasized the agricultural dominance. 

Similar to the RF classification, waterbodies accounted for 

only 7 square kilometers (1% of the total area). The SVM 

classification identified a higher land area for the fallow 

land class, covering 120 square kilometers (18% of the 

total area). This indicated a significant presence of fallow 

land in the study area. Conversely, the settlement class had 

a relatively smaller land area of 99 square kilometers (15% 

of the total area). The NB classification produced a higher 

land area for the forest class, covering 219 square 

kilometers (33% of the total area). This indicated a 

significant presence of forests in the study area. However, 

the fallow land class had a relatively smaller land area of 

only 14 square kilometers (2% of the total area). It is 

important to note that the NB algorithm tends to classify 

fallow land into other classes, resulting in a lower land area 

for this category. The GTB classification revealed that 

cropland occupied a significant land area of 326 square 

kilometers (49% of the total area), making it the highest 

among all the algorithms for this class. Waterbodies 

accounted for 9 square kilometers (1% of the total area), 

representing the lowest land area among all the algorithms 

for this class. 

 

The results of the LULC classification using different 

machine learning algorithms provided valuable insights 

into the land cover distribution in the study area (Figure 5). 

The RF and CART classifications consistently identified 

cropland as the dominant land cover class, highlighting the 

agricultural dominance in the region (Table 1). The SVM 

classification showcased a significant presence of fallow 

land, indicating land management practices in the study 

area. The NB classification revealed a substantial forest 

cover, while the GTB classification confirmed the 

importance of cropland in the landscape. 

 

These variations in land cover classifications among the 

algorithms can be attributed to their inherent differences in 

modeling approaches and parameter settings. Each 

algorithm has its strengths and weaknesses in capturing 

specific land cover characteristics. Therefore, the choice of 

algorithm should be carefully considered based on the 

research objectives and the characteristics of the study 

area. 
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Figure 4. LULC classification (a) RF (b) CART (c) SVM (d) NB (e) GTB 

 

 
Figure 5. Percentage of LULC classes 
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4.2 Accuracy Assessment 
The accuracy assessment was conducted to evaluate the 

performance of the machine learning algorithms in 

classifying land use and land cover (LULC) categories. 

The assessment involved calculating producer accuracy 

and consumer accuracy for each class, as well as overall 

accuracy and Kappa coefficient. Producer accuracy 

measures the correctness of classifying pixels belonging to 

a specific class. The results of the producer accuracy 

analysis for each algorithm are presented in Table 2. For 

the settlement class, RF, CART, SVM, and NB algorithms 

achieved high producer accuracy scores of 0.93, indicating 

accurate classification of settlement areas. GTB algorithm 

achieved a perfect producer accuracy score of 1. Cropland 

classification showed varied results among the algorithms. 

RF and SVM achieved high producer accuracy scores of 

0.93, indicating accurate classification. CART had a 

relatively lower score of 0.8, while NB and GTB showed 

scores of 0.66 and 1 respectively. 

 

Table.1: Percentage of LULC classes 

Class/Algorith

m 
RF 

CAR

T 

SV

M 
NB 

GT

B 

Settlement  
24.4

2 

25.00 14.9

8 

19.5

9 

18.8

4 

Cropland 
40.1

6 

56.10 47.9

6 

24.4

3 

49.2

7 

Fallow land  
9.84 11.01 18.1

8 

2.06 5.93 

Waterbody 1.14 1.05 1.13 1.18 1.32 

Forest  
13.8

1 

2.40 8.84 33.0

7 

7.59 

Barren land 
10.6

3 

4.44 8.90 19.6

7 

17.0

5 

Total 100 100 100 100 100 

 

Fallow land classification showed consistent high 

producer accuracy scores across most algorithms, ranging 

from 0.86 to 0.93. SVM achieved a perfect score of 0.93. 

Waterbodies were accurately classified by all algorithms, 

with producer accuracy scores ranging from 0.86 to 0.93. 

Forest classification results varied among the algorithms, 

with RF and SVM achieving high producer accuracy 

scores of 0.93 and 1 respectively. CART and NB showed 

lower scores of 0.73 and 0.53, while GTB achieved a 

perfect score of 1. Barren land classification had varied 

results, with RF achieving a producer accuracy score of 

0.8, CART scoring 0.33, SVM scoring 0.93, NB scoring 

0.86, and GTB scoring 0.6. 

 

Consumer accuracy measures the correctness of 

classifying pixels that were labelled by reference data. The 

results of the consumer accuracy analysis for each 

algorithm are presented in Table 3. For the settlement 

class, RF, CART, and SVM algorithms achieved perfect 

consumer accuracy scores of 1, indicating accurate 

classification of settlement areas. NB and GTB algorithms 

achieved scores of 0.77 and 0.93 respectively. Cropland 

classification showed varied results among the algorithms. 

RF and SVM achieved relatively high consumer accuracy 

scores of 0.87 and 0.93 respectively. CART had a lower 

score of 0.63, while NB and GTB showed scores of 0.55 

and 1 respectively. Fallow land classification showed 

varied results, with consumer accuracy scores ranging 

from 0.59 to 0.93. SVM achieved the highest score of 0.93. 

Waterbodies were accurately classified by all algorithms, 

with perfect consumer accuracy scores of 1. Forest 

classification results varied among the algorithms, with RF 

achieving a consumer accuracy score of 0.87, CART 

scoring 0.78, SVM scoring 0.93, NB scoring 0.8, and GTB 

scoring 0.88. Barren land classification had varied results, 

with RF achieving a consumer accuracy score of 0.92, 

CART scoring 0.71, SVM scoring 0.87, NB scoring 0.86, 

and GTB scoring 0.9. 

 

Overall accuracy provides an assessment of the overall 

correctness of the classification results, while Kappa 

coefficient measures the agreement between the 

classification results and the reference data. Among the 

algorithms, SVM achieved the highest overall accuracy 

score of 0.94, indicating a high level of accuracy in 

classifying the LULC categories. RF, NB, and GTB 

algorithms achieved overall accuracy scores of 0.91, 0.8, 

and 0.9 respectively (Figure 6). CART algorithm had a 

lower overall accuracy score of 0.76. SVM also achieved 

the highest Kappa coefficient of 0.93, indicating a 

substantial agreement between the classification results 

and the reference data. RF, NB, and GTB algorithms 

achieved Kappa coefficients of 0.89, 0.86, and 0.88 

respectively. CART algorithm had a lower Kappa 

coefficient of 0.72 (Figure 6). 

 

These accuracy assessment results provide valuable 

insights into the performance of different machine learning 

algorithms for LULC classification. The SVM algorithm 

demonstrated the highest accuracy and agreement with the 

reference data, indicating its effectiveness in accurately 

classifying the LULC categories in the study area. 

 

Table 2: Producer accuracy 

Class/ 

Algorithm 

RF 

 

CAR

T 

 

SV

M 

 

NB 

 

GT

B 

 

Settlement 0.93 1 0.93 0.93 1 

Cropland 0.93 0.8 0.93 0.66 1 

Fallow land 0.93 0.86 0.93 0.86 0.93 

Waterbodies 0.93 0.86 0.93 0.93 0.86 

Forest 0.93 0.73 1 0.53 1 

Barren land 0.8 0.33 0.93 0.86 0.6 

 

Table 3: Consumer accuracy 

Class/ 

Algorithm 

RF 

 

CART 

 

SVM 

 

NB 

 

GTB 

 

Settlement 1 1 1 0.77 0.93 

Cropland 0.87 0.63 0.93 0.55 1 

Fallow land 0.82 0.59 0.93 0.86 0.73 

Waterbodies 1 1 1 1 1 

Forest 0.87 0.78 0.93 0.8 0.88 

Barren land 0.92 0.71 0.87 0.86 0.9 
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Figure 6. Overall accuracy and kappa coefficient 

 

5. Conclusion 

 

The primary objective of this study was to analyze the 

performance of various machine learning algorithms in the 

context of LU/LC classification using Sentinel-2 Level-1C 

data. Our findings shed light on the significant agricultural 

dominance within the study area, with cropland emerging 

as the dominant land cover class. Additionally, the study 

revealed the presence of fallow land, forests, and 

waterbodies, adding depth to our understanding of the 

landscape. 

 

One of the key takeaways from this research is the pivotal 

role that the choice of algorithm plays in the classification 

outcomes. Our results underscore the importance of 

selecting the most suitable algorithm based on specific 

research objectives and the unique characteristics of the 

study area. It is evident that different algorithms excel in 

capturing distinct aspects of the landscape, which has 

implications for the accuracy and applicability of land 

cover classification results. 

 

Furthermore, our accuracy assessment demonstrated the 

effectiveness of the SVM algorithm in accurately 

classifying the various land cover categories. This 

highlights the relevance of SVM in LU/LC classification 

tasks, but it should also encourage researchers to carefully 

consider algorithm selection for their own studies. 

In conclusion, this research contributes valuable insights 

that hold significance for land management, urban 

planning, and environmental monitoring purposes. The 

dynamic interplay between machine learning algorithms 

and LU/LC classification results offers a fertile ground for 

further investigation and validation. Future research 

endeavors should aim to refine and expand upon these 

findings to enhance the accuracy and applicability of 

LU/LC classifications in diverse geographic regions. 
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