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Abstract: Timely and accurate estimation of acreage and production of horticulture crops is necessary for deciding how 

much, where and when to export these commodities in the national and global markets. Remote sensing has been one of 

the methods adopted, in addition to conventional sampling methods, for improving the estimates. Parametric image 

classification algorithms have been used by many researchers for identification and area estimation of horticulture 

crops. But these algorithms result in several unclassified pixels leading to over/underestimates. This study has been 

undertaken to estimate the area of two horticulture crops (i.e., mango and coconut) of Hesaraghatta hobli of Bengaluru 

urban district using Convolutional Neural Network (CNN) on Google Colaband Random Forest (RF) algorithms on 

Google Earth Engine (GEE). Remotely sensed data acquired by the Multi-Spectral Instrument (MSI) onboard Sentiel-

2A satellite was used. Spectral signatures of horticulture crops and other associated cover types have been generated to 

identify the cover types and for selecting appropriate band combinations. Two different band combinations were used 

for area estimation of selected horticulture crops: i) Near-InfraRed (NIR), Red, and Green all three having a spatial 

resolution of 10 m, ii) Red edge-3, Short-Wave InfraRed1 (SWIR1) and Short-Wave InfraRed2 (SWIR2) having 20 m 

spatial resolution. Area estimates of horticulture crops and associated cover types were validated with respect to ground 

truth and statistical reports from Karnataka State Directorate of Horticulture (KSDH). It was found that the CNN model 

performed better than RF using NIR, Red, and Green band combination with an overall accuracy of 84%, but it failed to 

give similar accuracies with Red edge 3, SWIR1, and SWIR2 band combination. We attempted transfer learning using 

the trained CNN model at two different study areas far away from the study area and found encouraging results. 
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1.  Introduction 

 

Horticultural crops serve as a source of income and 

provide employment opportunities for the farmers of the 

country. But these crops experience lot of fluctuation in 

their production owing to weather and climate variations. 

Therefore, timely estimates of area and production of 

horticulture crops are necessary for taking appropriate 

decisions in their marketing and export. Several 

researchers from Indian Agricultural Statistics Research 

Institute (IASRI), Directorate of Economics and Statistics 

(DES), Ministry of Agriculture& Farmers Welfare, 

National Sample Survey Organization (NSSO) and the 

State-level Horticulture Universities have developed 

innovative statistical techniques for estimating area and 

production but they are time consuming and costly.  

 

Remote sensing (RS) and geographic information system 

(GIS) are the emerging technologies for generating 

quicker and easier estimates of acreage and production. 

Per-pixel based classification algorithms have been 

extensively used for estimating acreage and production of 

horticulture crops (Yadav et al., 2002; Nageswara Rao et 

al., 2004; Paul et al., 2018). Ray et al. (2018) have also 

tried several image analysis techniques for horticulture 

crop assessment under the national project called 

Coordinated Horticulture Assessment & Management 

using GeoiNformatics (CHAMAN). Advanced geospatial 

technologies have been applied for expansion of 

horticulture in the north eastern region of India 

(Handique et al., 2021). 

 

Realising that the per-pixel methods do not consider the 

spatial relationships of neighbouring pixels associated 

with them which in turn results in mixed pixels and 

inconsistency in the estimates, several researchers tried 

Object-Based Image Analysis (OBIA) algorithms in the 

image segmentation phase followed by a variety of 

classification algorithms for analysis (Lu and Weng, 

2007; Blaschke, 2010; Duro et al., 2012., Handique et al., 

2020; Stephen et al., 2022). Baharami et al. (2021) have 

tried several ML algorithms to estimate crop biophysical 

parameters. Other researchers have tried to improve the 

accuracy and quality of remotely-sensed information by 

incorporating ancillary data in the classification process 

(McIver and Friedl, 2002) including expert systems and 

neural networks (Qiu and Jensen, 2004). However, there 

are not many successful studies on identification and area 

estimation of horticulture crops in our country. Therefore, 

there is a need for developing an effective methodology 

of incorporating spectral, spatial and ancillary 

information. 

 

ML and Artificial Neural Networks (ANN) have taken 

over statistical modelling techniques in various fields, 

because of their high performance and capability to solve 

complex problems, by virtue of their capability to execute 

a particular task (Khemani, 2013). ANN has been used to 
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classify various types of remotely sensed data and 

produced results better than those of traditional statistical 

classification methods (Jiang et al., 2004). In recent 

years, several researchers have used the Convolutional 

Neural Networks (CNN) for performing object detection, 

image segmentation and pattern recognition (Verma and 

Jana, 2019; Chouhan et al., 2022; Singh et al., 2022) and 

for mapping Rabi crops using multispectral temporal 

images of Sentinel-2A/2B sensors (Snighal et al., 2022). 

CNN is a deep learning algorithm and it considers shape, 

texture, size, and spatial relationships of objects to extract 

information from images. 

 

In this study, the CNN, a widely used approach in the 

field of object recognition and Random Forest (RF) that 

is computationally less expensive and does not require a 

graphical processing unit (GPU), were used to develop a 

methodology to accurately identify and estimate the area 

of perennial horticulture crops (Mango and Coconut). 

 

2.1 Study area  

The Hesaraghatta Hobli, a sub-division below the district, 

in the state of Karnataka (Figure 1) was selected for the 

study. It is a semi-arid administrative unit having an area 

of 54 sq.km. It is located at an elevation of 915 meter 

above mean sea level (msl) and mean annual rainfall of 

920 mm. This study area was selected because it has 

several varieties of fruit crops like Mango, Guava, 

Banana, Sapota, Papaya, etc developed and promoted by 

the Indian Institute of Horticulture Research (IIHR) of 

Indian Council of Agriculture Research (ICAR). The 

farmers of the study area are very progressive in 

developing horticulture as an enterprise. IIHR is 

encouraging farmers to maintain biodiversity in their 

farming systems so that their economy is climate-

resilient. The study area truly represents the heterogeneity 

that is worth applying AI for object recognition and 

information extraction from remotely sensed data.  

 

Figure 1. Location of Hesaraghatta hobli shown in  

the north-western corner of Bangalore Urban District 

2.2 Data Sources and Software Used 

Spatial data used in the study have come from different 

sources (Table1). We have used GEE-based cloud 

computing that gave access to data, algorithms to process, 

analyse and visualize the spatial data. The GEE had 

enabled us to handle several gigabytes of raw images 

without much financial investment on high-performance 

hardware and software systems. The Tensor Flow (TF), 

the front end Application Programming Interface (API) 

developed by Google has several pre-trained models. 

Google Colab was used as platforms to perform ML. TF, 

an open source framework developed by Google for 

predictive analytics, was used to perform deep learning. 

An open-source API called Keras with user-friendly 

interface written in Python was used to construct deep 

learning model on TF. Python-for-Remote Sensing-and 

GIS (Pyrsgis) library was used to read, write, and export 

geospatial data in Geotiff format. Skimage library was 

used for pre-processing of data.  

Table 1. Sources of data used in the study 

Data Sources Data product 

& Date 

Spatial / 

radiometric 

resolution  

Sentinel-2A 

Multispectral 

Instrument 

(MSI) 

L-2A, On UTM 

projection, 

WGS 84 datum. 

23-01-2022 

12 spectral 

bands, 

10 mand 20 m 

/ 16 bit 

LULC maps  

from KSRSAC 

Vector layers  

(.shp)2021 

1:10,000 scale 

Administrative 

boundaries from 

K-GIS website. 

Vector layers 

(.shp) 

1: 10,000 scale 

Ground Truth April 20 & 25, 

2022 

Geotagged 

Photographs 

Karnataka State 

Horticulture 

Department 

(KSHD) 

 Crop Area 

Statistics 

Printed reports 

 

2.3 Spectral signatures of horticulture and associated 

cover types 

Spectral signatures of mango, coconut, scrubland, 

eucalyptus and other plantations (Figure 2) were 

generated using the spectral reflectance observed in 

visible (B,G,R), Red edge, NIR, and SWIR bands of 

Sentinel-2A MSI. These signatures are very valuable in 

the selection of appropriate spectral bands during 

subsequent analysis. We observed significant overlap in 

spectral reflectance of mango, scrubland and eucalyptus 

in the wavelength range from 496.6 nm to 740.2 nm and 

at 864.8 nm. Good separability was observed at 835.1 

nm, 1613.7 nm and 2202.4 nm. Coconut and other 

plantations showed significant overlap with each other 

from 496.6 nm to 703.9 nm and fairly good separability 

in other wavelengths. While the open land and fallow 

cropland signatures were overlapping at 560 nm and 

740.2 nm, good separability was observed in other 

wavelengths. Signatures of grapes overlapped at 664.5 

nm and that of fallow land in the 835.1 nm to 864.8 nm.  

2.4 Generation of false colour composites (FCCs) 

With respect to spectral signatures and in order to get 

familiarise with the spectral and spatial relationships in 

the study area, two FCCs were prepared: FCC1 using 

Near infrared (NIR), Red, and Green bands of spatial 

resolution 10 meters (m) coloured with red, green, and 

blue, FCC2 with Rededge-3, Short-Wave Infrared1 
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(SWIR1), and Short-Wave Infrared2 (SWIR2) resampled 

to spatial resolution of 10 m coloured with red, green, and 

blue respectively. These two FCCs (Figure 3 a and b) 

were used as input to CNN and RF for classification and 

area estimation of mango and coconut horticulture crops. 

 

2.5 Generation of training samples 

In order to enable the algorithm to perform the semantic 

segmentation (i.e., associating a label or category with 

every pixel in an image), we have used the land use land 

cover (LULC) vector map prepared by Karnataka State 

Remote Sensing Applications Centre (KSRSAC) for year 

2021. The map has various LULC classes including 

mango and coconut in the form of polygons as labelled 

dataset (Figure 4). The LULC vectors were converted 

from shape file to Geotiff format with a spatial resolution 

of 10 metres(m) and used as training sets for analysing 

FCC1 and FCC2. Since the random access memory 

(permitted by Colab is only 12 GB), we resorted to patch 

based approach to generate training samples from the 

satellite images (Figure 5). In all 768 grids of size 64*64 

pixels were used for training and validating the CNN. 

Each patch of image and its corresponding interpreted 

LULC map (mask) were used as instances in the model. 

In case of RF, 84 training and 35 validation samples 

(total 119) of minimum size of sixteen homogeneous 

pixels were created based on ground truth. 

 

Figure 2. Spectral signature of horticulture crops and 

associated LULC types of study area 

 

Figure 3. a) False Colour Composite (FCC)-1(all 

spectral bands of 10m spatial resolution) and b) FCC -

2 (all spectral bands of 20m spatial resolution) 

 

Figure 4. Reference human interpreted map of 

Mango, Coconut crops and associated LULC type 

(Source: KGIS project of KSRSAC) 

 

Figure 5.  (A) Sample test image of size 64*64*3 and 

(B) Reference interpreted map (Mask) of size 64*64. 

2.6 Area estimation of horticulture crops 

Area estimation using RF: The ground truth collected 

during April 20 & 25, 2022 at 119 locations was 

separated into two sets of samples for training and 

validation. The corresponding images were extracted 

from MSI-Level-2A satellite data: one dataset was used 

to train the RF and separate dataset for evaluating 

accuracy of trained RF model. Sequence of steps 
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followed for area estimation of the horticulture crops is 

given in Figure 6. 

 

Figure 6. Methodology for area estimation of 

horticulture crops using RF 

Area estimation using CNN: Image chips (from Sentinel -

2A MSI) and mask chips (from the visually interpreted 

LULC maps) were generated as explained in section 2.5. 

Pre-processing was carried out using MinMaxScaler of 

sklearn and converted the masks to categorical features 

using keras.utils. The data was split into training and 

validation datasets using sklearn.model_selection. Adam 

optimizer to minimise the loss, Rectified Linear Unit 

(ReLu) as the activation function, and several epochs to 

train the CNN were adopted. The Visual Geometry Group 

16 (VGG16) as backbone with pre-trained ImageNet 

weights in U-net architecture was tried (Ronneberger et 

al., 2015; Shelhamer et al., 2017; Siddique et al., 2017). 

In the study, U-net architecture was adopted because it 

can extract multi-scale spatial and spectral information 

from remotely sensed images by performing convolution, 

max-pooling operation and decoding by utilising up-

sampling and skip connections (Ge et al., 2021). It has 

achieved higher accuracies in multi-class classification 

tasks than other statistical and ML algorithms 

(TeluguntLa et al., 2018; Belgiu et al., 2016). A moving 

window of size 64*64 pixels with a minimal overlap of 2 

pixels was used with the trained CNN model on the 

whole image to obtain the classified map. The final 

classification map was visualised using Matplotlib library 

and exported using a geospatial python module called 

Pyrsgis. Only when the validation accuracy exceeded 

80%, the model was used for prediction. After training 

and validating the model, it was also used to perform 

transfer learning (i.e., testing the efficiency of the model 

outside the study areas). Sequence of steps followed is in 

figure 7. 

2.7 Accuracy Assessment  

Overall classification accuracy in case of RF was 

assessed as per Congalton and Green (1999) wherein a 

confusion matrix was created to evaluate and understand 

the performance of the classifier with both band 

combinations (FCC1 & FCC2). The diagonal values in 

the confusion matrix correspond to number of pixels 

classified correctly. Kappa co-efficient, producer’s and 

user’s accuracy were also evaluated from the confusion 

matrix. In case of CNN, accuracy graph was generated 

for train and validation data to evaluate the performance 

of the model and loss graph was generated to evaluate 

how far is the predicted output with respect to expected 

output for both band combinations. More details are 

available in Helber et al. (2017). A comprehensive review 

of assessing the labeling results can be found in Liu et al. 

(2018). 

 

Figure 7. Methodology for area estimation of 

horticulture crops using CNN 

3. Results and discussion 

It was observed that the CNN performed better (Table 2 

& Figure 8) than RF on FCC1 (10 m spatial resolution) 

with an overall accuracy of 84% (Figure 9). It seems this 

algorithm efficiently incorporates the spatial relationships 

among pixels along with their spectral reflectance in the 

classification. In case of FCC-2, the performance of CNN 

was not that good as seen from training and validation 

accuracy (Figure 10). Hence no further experiments were 

conducted on FCC2 with CNN. However, the RF 

performed better (Figure 11) than CNN on FCC2 (20m 

spatial resolution) with an overall accuracy of 97.65% 

(Table 3). The CNN was not able to generalise the 

smaller features within the scene (due mixed pixels) due 

to coarse resolution, hence resulted in lower accuracy and 

greater loss. 

Table 2. Overall Classification accuracy of RF and 

CNN using FCC1 and FCC2 of MSI data 

Algorithm 

Used 
Overall accuracy 

(%) 
Kappa coefficient 

RF FCC1 82.30 0.80 
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FCC2 97.65 0.96 
CNN FCC1 84.00 0.81 

FCC2 50.55 0.48 

 

 

Figure 8. Training and Validation accuracy 

assessment graphs of CNN on FCC1 

Validation of predicted classes (Figure 12) obtained using 

different band combinations of MSI with RF and CNN 

algorithms was done with respect to ground truth. As 

evident from Table 3, mango was identified with an 

accuracy of 77.7% using CNN (applied on FCC1) and RF 

(applied on FCC2). Validation accuracy of 100% for 

coconut was observed with CNN applied on FCC1 while 

the RF gave an accuracy of 75% and 87.5% for both band 

combinations. Accuracy of 57-90% was observed for 

other cover types with both the classifiers. 

 

Figure 9. Classified Output using CNN (on U-net 

architecture) algorithm applied on FCC1 

 

 

Figure 10. Training and Validation accuracy 

assessment graph of CNN on FCC2 

Table 3. Horticulture Crop Accuracy Assessment 

using RF and CNN on FCC1 and FCC2 

Horticulture / 

Associated cover 

types 

Accuracy 

Using 

RF (%) 

Accuracy 

Using 

CNN 

(%) 

Mango 

FCC1 44.4 77.7 

FCC2 77.7  

Coconut 

FCC1 75.0 100 

FCC2 87.5  

Eucalyptus 

FCC1 80.0 90 

FCC2 90.0  

Scrub land 

FCC1 57.1 71.4 

FCC2 71.4  

 

83



  Journal of Geomatics  Vol.17, No.1, April 2023 

 

 

Figure 11. Classified output using RF algorithm 

applied on FCC1 

 

Figure 12. Classified output using RF algorithm 

applied on FCC2 of MSI data 

As evident from Table 4, the area estimation of mango 

using RF classifier with both band combinations were 

found to be overestimated, whereas area estimation using 

CNN (applied on FCC1) was found to be better than RF 

because of no mixed pixels. The area estimates of 

coconut were in the range of 314-357 ha using RF with 

both band combinations, whereas area estimates using 

CNN with FCC1 data was found to be 310 ha. The 

relative deviations (RD) are very high because the data 

supplied by the KSHD are older than RS data and not 

updated. Our efforts to get exact data from KSHD 

corresponding to MSI data did not succeed. 

 

It is very encouraging to note that the trained CNN model 

was found to perform reasonably good transfer 

learningon two different study areas viz., Kundanahobli 

of Devanahalli taluk of Bengaluru rural district and 

Bommathanahalli panchayath of Pavagada taluk of 

Tumkur district (location maps of these study areas not 

shown due to space constraint). In the first case, where 

spatial and spectral variabilities are similar to the study 

area, the model did better classification of all LULC 

cover types including mango and coconut horticulture 

crops. In second case where spatial and spectral 

variabilities are quite different from that of Hesaraghatta 

hobli (the present study area), the trained CNN model 

gave better classification for the cover types which were 

large in size (in terms of area and contiguity of classes), 

whereas model failed to identify smaller sporadically 

distributed fields. This assessment was made based on 

visual comparison of the predicted output with  Google 

satellite imagery as a reference. Quantification of transfer 

learning, in terms of overall accuracy, omission and 

commission errors shall be done in our future research 

studies. 

 

Table 4. Area estimates using RF on FCC1 and FCC2 

and using CNN on FCC1of MSI Data 

Crop 

Cover  

type 

Crop Area (ha) RD1 

% 

RD 2 

% 

RF CNN KSHD
@ 

  

M
an

g
o
 FCC1 1221 125 64 (+) 

94.7 

(+) 

48.8 

FCC2 1652 -  (+) 

117.4 

 

C
o

co
n

u
t FCC1 357 310 118 (+) 

66.94 

(+) 

61.9 

FCC2 314 -  (+) 

62.42 

 

@Karnataka State Horticulture Directorate 

Relative Deviation with RF (RD1)={(RS-KSHD) / RS)} 

* 100., Relative Deviation with CNN (RD2)  

 

4. Conclusions 

The CNN-based classification allowed better object 

detection and improved classification accuracy with 10 

meter spatial resolution data. In case of coarse resolution 

data (20 meter), the CNN algorithm showed good 

learning accuracy but resulted in low validation accuracy 

which clearly shows that there was lot of spectral mixing 

of horticulture gardens which are smaller than the spatial 

resolution of the sensor. However, the CNN model did 
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well in identifying the built up, water bodies, fallow and 

other croplands which are large in spatial extent. While 

the RF-based classification performed well on the coarse 

resolution (20 m) data, though there were mixed pixels.  

The study clearly shows that the ML algorithms provide a 

means of obtaining rapid and automatic estimation of 

horticultural crops like mango and coconut that are 

economically important. The new methods of information 

extraction from remotely sensed images help in the 

development of intelligent horticulture information 

systems to take appropriate decisions in export/import of 

these commodities and improving the efficiency of their 

supply chain. It would also help the state-level 

functionaries (e.g., KSDH) to update their area statistics 

without much waiting for receiving the information 

through their administrative hierarchy. The modern 

algorithms such as ML and deep learning (DL) provide 

better opportunities for efficiently processing the ‘big 

data having very high spatial (a few centimeters) and 

temporal resolution (any time) going to be collected by 

several start-ups using Unmaaned Aerial Vehicles 

(UAVs).   
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