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Abstract: As marginal, the Barents Sea plays a major role in the process of Atlantification, and large seasonal 

variability in sea ice is observed over the region. Current sea ice concentration and thickness obtained from satellite 

help one understand the variation in sea ice is seasonal. During summer, the concentration and thickness of sea ice are 

seen to fall, and during winters, it is seen to rise. In order to understand the difference in these variabilities and to 

analyse the future state of sea ice, a standard logistic curve model is considered. The standard logistic curve model is 

applied to sea ice parameters during summer and winter to quantify the sea ice growth and decay processes over the 

Barents Sea.The model yields predicted values based on the adjustment parameter (b) used.Results show that the 

predicted sea ice concentration performs well with the satellite sea ice concentration values. The model is run on the 

timeframe grouped into two, with each set having an average of ten years from 2000-2020. For the decay process, the 

fitted sea ice concentration decay curves derived from the standard logistic curve model are in good agreement with the 

observed data for the two timelines, with r2 = 0.88 and 0.87, respectively. Similarly, for the growth process, the relevant 

fitted decay curves derived from the standard logistic curve model are also in good agreement with the observed data 

during the above different time periods withr2= 0.80 and 0.78, respectively. Further, the model is implied to sea ice 

thickness, and the result obtained by the logistic curve model is found to be consistent with the satellite sea ice thickness 

with r2 = 0.75 for the years 2011–2020. Particularly, both the rapid sea ice increase pattern during the growth process 

and the remarkable decrease pattern during the decay process are successfully characterized by the corresponding fitted 

curves. The introduction of calculated adjustment parameters into the model helps in accurately determining the sea ice 

variables, which brings us closer to conservation tools that mitigate therisks associated with rapid sea ice loss. 
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1. Introduction 

 

Earth's overall temperature warmed by 0.8 °C 

(Intergovernmental Panel on Climate Change, 2018) 

since the late 19th century, while the Arctic has warmed 

by 2 - 3 °C over the same span (Allen et al., 2018). 

Similarly, Antarctica, the coldest, windiest, and driest 

continent on Earth, has also experienced prominent 

decadal and interannual variation in mean annual 

temperature anomalies. The increase in temperature has 

caused a total ice sheet loss (Turner et al., 2019) from 40 

± 9 Gt/y in 1979–1990 (Schröder et al., 2018) to 252 ± 26 

Gt/y in 2009–2017 (e.g., King & Turner, 1997). With an 

increase in temperature, pronounced seasonality, and the 

year-round presence of ice and snow, the Arctic and 

Antarctica may face different futures in response to 

topographical and geographical reasons (Meredith et al., 

2019). The temperature hike due to warming is of great 

concern as the poles are important components of the 

global climate system and their changes have highly 

impacted ocean hydrology, atmospheric circulation, and 

climate change (Kim et al., 2014). Overall, one of the 

most visible signs of warming changes over the poles is 

the declining sea ice cover. Sea ice concentration and 

extent, which are clear indicators of sea ice cover, have 

decreased in all months over the past 30 years (Parkinson, 

2019). Particularly during summer, the sea ice is seen to 

be thinning. As the thinner ice dominates the thicker ice, 

the younger ice type is seen to be more prevalent than the 

multiyear ice (Meier et al., 2014). 

 

Due to the diverging nature (decline in sea ice occurs at 

different rates in different regions and seasons) of the 

Arctic, unlike the Antarctic in terms of its ocean 

influence, many scientists have projected the Arctic to be 

ice-free in most late summers as soon as the 2030s (Wang 

et al., 2009; Holland et al., 2006; Boé et al., 2010; 

Eisenman & Wettlaufer, 2008; Notz et al., 2009). The 

future of Arctic sea ice cover is of enormous climatic and 

economic significance (ACIA, 2005). The daily sea ice 

concentration data from the NSIDC shows that the sea ice 

concentration varies significantly between 2007 and 

2012. The maximum (higher) values of sea ice 

concentration was reducing, while the minimum (lower) 

values of concentration were found to be increasing 

(Vázquez et al., 2016). The highest decreasing rates are 

mainly focused on the Beaufort, Chukchi, and East 

Siberian Seas (Chen & Zhao, 2017; Zhao et al., 2017). In 

the summer of 2010, there was a very low sea ice 

concentration (30%) that appeared at high Arctic 

latitudes, even lower than that of the surrounding pack of 

ice at lower latitudes (Cavalieri & Parkinson, 2012). The 

extent of perennial sea ice in the Arctic decreased rapidly, 

and in the East Arctic Ocean, it continued to be depleted 
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with area-wise reduction of 70% from October 2005 to 

April 2006 (Nghiem et al., 2006). Along with 

concentration and extent, sea ice thickness is another key 

characteristic of the sea ice cover. Sea ice that are thick 

enough can survive the summer melt season and may last 

for many years. For ice to thicken, the ocean must lose 

heat to the atmosphere. But this thicker sea ice 

deteriorates the coupling between the ocean and 

atmosphere systems (Vella & Wettlaufer, 2008). Thicker 

sea ice is a strong thermal insulator; as a result, it limits 

heat transfer from the ocean to the atmosphere in winter 

and also its thermodynamic growth (Petty et al., 2018; 

Rösel et al., 2018). By the end of winters, thicker ice gets 

developed, decreasing the transmission of solar radiation 

to the surface ocean and reducing the potential primary 

productivity (Mundy et al., 2005; Katlein et al., 2015). 

Also, this thick sea ice is more likely to survive the melt 

season, increasing the average age of sea ice. 

 

While investigating the influence of oceans over sea ice, 

the Barents Sea is found to be a hotspot for Arctic climate 

change (King et al., 2017; Lind et al., 2018; Schlichtholz, 

2019; Skagseth et al., 2020), with pronounced upper 

ocean warming and a retreating sea ice cover over the 

past two decades (Sorokina et al., 2016; Screen et al., 

2018). The Barents Sea is one of the marginal shelf seas 

of the Arctic Ocean, which surrounds the Arctic Basin. 

The sea is located in the European sector of the Arctic 

and is influenced by both Atlantic and Arctic waters. 

Most of the sea ice in the Barents Sea is formed locally, 

with a fraction imported from the Arctic Basin through 

the straits between Svalbard and Novaya Zemlya. The 

marginal ice zone in the western Barents Sea extends 

south to 75 -78° N in early spring and retreats to about 

80-82° N in late summer. This trend has been seen 

extending to higher latitudes during the last 10 years 

(Tronstad et al., 2007). It is expected that ice cover in the 

Barents Sea will continue to reduce in the future also due 

to (i) increase in Arctic air temperature, (ii) recent 

increase of cyclonic activity in northern north Atlantic 

and associated ocean heat anomalies, and (iii) depletion 

of sea ice in the eastern Arctic Ocean and thus less import 

of thick ice into the Barents Sea region (Smedsrud et al., 

2013). Additionally, air-sea temperature differences in 

the Barents Sea are extremely large, ocean heat release 

reaches values of 300-500 Wm−2 (Simonsen and Haugan, 

1996). The Barents Sea dominates the seasonal Arctic 

heat budget and has the most vigorous ocean air exchange 

in the Arctic, making it a centre of influence on the high 

latitude climate system (Serreze et al., 2007). Studies 

suggest that the decrease in sea ice over the Barents Sea 

in early winter also affects cyclonic pathways in the 

downstream region (Inoue et al., 2012) and results in a 

warm Arctic pattern. The Barents Sea ice extent in winter 

has decreased since 1850 (Shapiro et al., 2003), and the 

retreat observed during recent decades has been the 

largest decrease in the Arctic (Parkinson & Cavalieri, 

2008).  

 

The decline in sea ice is faster than what most models 

have forecasted, leading to possible near-ice-free summer 

conditions in the coming decades. This is due to a 

combination of factors, including the complexity of the 

Arctic climate system and the difficulty of modeling the 

interactions between different components of the system 

(Walsh et al., 2017). Most climate models have predicted 

a decline in Arctic sea ice extent and thickness in 

response to increasing greenhouse gas concentrations in 

the atmosphere. However, the actual decline has been 

more rapid than what the models have projected. For 

example, the minimum Arctic sea ice extent in September 

2020 was the second-lowest on record (Diebold et al., 

2020), despite most models predicting that such low 

extents would not be reached until the 2030s. According 

to climate change experiments based on phase 5 of the 

Climate Model Intercomparison Project (CMIP5), the 

warm Arctic anomalies will continue in the future 

(Yang and Christensen, 2012). Additionally, a new 

generation of atmosphere-ocean coupled reanalysis, the 

National Centers for Environmental Prediction Climate 

Forecast System Reanalysis (NCEP CFSR), has been 

produced. The NCEP CFSR has benefited from advances 

in operational weather forecasting and previous 

reanalysis improvements (Bengtsson et al., 2007). The 

NCEP CFSR assimilates the oceanic field, including sea 

ice concentration. Therefore, it is expected that the 

predictability of the sea ice and its relation to the 

atmosphere and ocean variability can be examined. 

Similar to such models, is the Community Earth System 

Model (CESM), which is used to simulate the 

interactions between the atmosphere, oceans, land 

surface, and sea ice. It is used to make projections of 

future sea ice conditions under different climate scenarios 

(Danabasoglu et al., 2020). For short-term (daily to 

seasonal) timescale prediction, the Arctic Regional Ocean 

Model (AROM) is generally used (Ren et al., 2021). The 

Pan-Arctic Ice-Ocean Modeling and Assimilation System 

(PIOMAS) is used to track changes in Arctic sea ice over 

time and make predictions about future sea ice conditions 

(Zhang and Rothrock, 2003). These models are 

continually being refined and improved as more data 

becomes available and our understanding of the complex 

processes that govern sea ice behaviour increases. Similar 

to these models, one such model that can help in 

assessing the growth and future of sea ice conditions is 

the standard logistic curve model (Hui, 2006). This model 

had been used originally to analyse the growth of 

population, where the carrying capacity denoted the 

population size at which the population growth rate 

equals zero. But now, the model is being used in various 

fields of science (Meyer, 1994). As the model made space 

in every aspect of science (Bony et al., 2006), the 

carrying capacity now represented merely the value of a 

state variable at which its growth rate equals zero in a 

system. Researchers in the past have used this logistic 

curve model to understand the sea ice conditions over 

Antarctica (Tietsche et al., 2013) and Arctic (Bitz and 

Lipscomb, 1999). Over the Arctic, the model was used to 

study the seasonal cycle of Arctic sea ice volume. 

 

The paper illustrates and discusses the use of the standard 

logistic curve model to understand the behaviour of sea 

ice during summers and winters. This study aims to 

explore and characterize a quantitative statistical model in 

order to better quantify and simulate the sea ice growth 

and decay processes in the Barents Sea during 2000-
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2020. The paper aims to study sea ice concentration and 

sea ice thickness, obtained through the model, to analyse 

how the sea behaves during various seasons; summer and 

winter. Here, the evolution of sea ice over the region, 

that is, from the freeze onset to its maximum attainment, 

is considered. These parameters further help in projecting 

the future of the Arctic sea ice. The model operates based 

on the threshold value allotted to the adjustment 

parameter. The model can operate on two types of 

adjustment parameters: one by fixing it and the other by 

varying it. Here the major goal revolves around finding 

which value of the adjustment parameter can better fit 

with the satellite sea ice values, therefore offering an 

opportunity for predicting sea ice state on seasonal 

timescales. The current model aims at providing valuable 

information on how sea ice parameters evolve and how it 

will be affected by changing climate. This model can be 

used for long-term climate studies, short-term operational 

forecasts (within the duration of one year or so), and 

seasonal forecasts (such as during the decay and growth 

phases of sea ice). 

 

2. Datasets and Methodology 

 

For the current study, consistent monthly sea ice 

concentration (SIC) and sea ice thickness (SIT), of the 

Barents Sea of the Arctic region are considered. 

 

2.1 Datasets 

SIC data is selected from National Snow and Ice Data 

Center (NSIDC) (Stroeve et al., 2018) for the years 2000-

2020. The spatial resolution of the data is 0.22° x 

0.22°. The SIC data is retrieved based on the NASA 

TEAM algorithm in terms of the brightness temperature 

data. The accuracy of total sea ice concentration is within 

± 5 % of the actual sea ice concentration in winter, and ± 

15 % in the Arctic during summer when melt ponds are 

present on the sea ice. Accuracy tends to be best within 

the consolidated ice pack when the sea ice is relatively 

thick and ice concentration is high. Accuracy decreases as 

the proportion of thin ice increases (Cavalieri et al., 

1996). However as the time range considered for this 

study is limited to just 20 years, such a decline in 

accuracy is irrelevant in the current case. Additionally, 

SIT data have also been taken from NSIDC (Kurtz and 

Harbeck, 2017) CryoSat-2, but for the span of 2010-

2020. The spatial resolution of the SIT data is 0.22° x 

0.22°. The CryoSat-2 data set contains estimates of Arctic 

Sea ice thickness and SIC, ice freeboard and surface 

roughness, as well as snow density and depth, derived 

from the ESA CryoSat-2 Synthetic Aperture 

Interferometric Radar Altimeter (SIRAL). Quality 

assessment of this data is done through comparison with 

NASA’s Operation IceBridge data. Freeboard error for a 

0.22° grid cell from the associated surface elevation 

retrieval error is estimated as ±0.065 m in comparison 

with IceBridge data (Kurtz and Harbeck, 2017). The 

shape files for the Barents Sea are extracted from Marine 

Regions Database. Marine Regions are generally used to 

create a standard, relational list of geographic names, 

coupled with information and maps of the geographic 

location of these features. 

2.2 Methodology 

To understand the state of sea ice prevailing over the 

region, satellite-observed monthly SIC and SIT are 

considered. After the extraction of these datasets from the 

aforementioned sources, they are put through pre-

processing. The data is pre-processed to extract the 

cryospheric variables, latitudes, and longitudes. The data 

is further re-projected into a different coordinate system 

(npstere-north polar stereographic projection) 

corresponding to the spatial resolutions of both the 

datasets. Firstly, the spatio-temporal analysis of SIC is 

carried out. For the spatial analysis, the years 2000–2004 

were considered as the background years from which the 

averages of 2005–2009, 2010–2014, and 2015–2019 were 

subtracted. The maps of the long-term average 2000–

2004 SIC from 2005–2009, 2010–2014, and 2015–2019 

at each location for each month were generated. 

However, the variability in SIC for the month of 

December, January, February, and March is displayed 

and thoroughly discussed in the upcoming section. For 

temporal variation of the parameter, monthly whisker 

plots are generated. Here, each month is represented as a 

box with whiskers extending the minimum and maximum 

values. The median is shown by a horizontal line inside 

the box, and the quartiles by a vertical line inside the box. 

Lastly, SIT is also analysed across the domain in a 

similar manner. The only difference between the two 

analyses is that SIC is carried out for all the months of the 

year, whereas SIT is only performed for the winter 

months due to the lack of availability of SIT data during 

the summer months. Further, SIC and SIT during the 

winter months, specifically January, February and March 

are intensely examined. Histograms with bins are 

considered for the ease of understanding. SIC is averaged 

over Barents Sea for the entire span of each month. The 

binning technique is used to reduce the amount of data. 

By using the trial-and-error method, a suitable bin size of 

70 was found, which removed the insignificant lower 

values and helped in the representation of the growth of 

SIC. The selected bin size clearly depicted the 

intensification of SIC from lower values to higher 

concentrations. However, for SIT, along with the 

knowledge of the number of pixels lying within a 

particular thickness, Gaussian density plots are also 

extracted. In the case of SIT, the Gaussian distribution 

gave a better understanding as it shows the continuous 

distribution of data around its center. Additionally, here 

the mean, median and mode are equal, giving a better 

knowledge of the shift in the variable during each month. 

Furthermore, for the quantitative analysis of the 

variability of sea ice, the logistic growth model is used to 

understand the seasonal sea ice growth and decay over 

the Barents Sea. For better clarity and transparency of the 

research methodology adopted in the paper, a flow chart 

is illustrated in Figure 1. The logistic curve model 

mentioned in the flow chart, used to predict the 

cryospheric parameters (SIC and SIT) is elaborately 

explained in Section 2.2.1. 
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Figure 1. Flow chart describing the methodology used

2.2.1 Standard logistic curve model 

In 1838, the Logistic function was first proposed by 

Pierre François Verhulst in the context of population 

growth. Verhulst derived the logistic equation to describe 

the growth of the biological population (Kyurkchiev and 

Markov, 2015). Interestingly, Sweilam et al. (2012) assert 

that the logistic equation is described by a first-order 

ordinary differential equation. Their study resonates 

further with Murphy et al., 2016 who noted that the 

logistic equation is formalized by the differential 

equation.  Later various modifications were made to the 

function to fit into various spheres of science. The 

mathematical equation of the standard logistic curve 

model is as follows: 

𝑌 =
𝐿

1+𝑏𝑒−𝑘𝑡
    (1) 

 

In Eq. (1), ‘Y’ refers to the observed temporal SIC or SIT 

at any month (t), ‘L’ is the carrying capacity (in summers 

it is seen varying but, during winters as the Arctic region 

is completely frozen, L = 100% for SIC and L = 3 m for 

SIT), ‘b’ stands for the adjustment parameter, which is to 

be calculated from the existing parameter value given, ‘e’ 

refers to the natural logarithm base, and ‘k’ represents the 

Logistic growth rate at which the ice 

concentration/thickness approaches L. This model has the 

ability to describe the growth stage, such as formation, 

development, maturity, and limit, of sea ice. The carrying 

capacity is determined by calculating the maximum 

occurrences of the highest value of SIC and SIT obtained 

over any pixel in the Barents Sea during winter and 

summer in the background years (2000–2004). During 

winter (October–March), SIC is found to have maximum 

value of 100% in 2000–2004, whereas during summer 

(April-September), L=87%. Similarly for SIT, L = 3 m 

during winters. Here, only the winter season is 

considered, as this dataset is unavailable during summer 

months. 

 

During winter the equation for SIC becomes: 

𝑌 =
100

1+𝑏𝑒−𝑘𝑡
     (2) 

 

And for summers the equation is, simplified as: 

𝑌 =
87

1+𝑏𝑒−𝑘𝑡
     (3)    

 

For SIT, eq. (1) becomes: 

𝑌 =
3

1+𝑏𝑒−𝑘𝑡
     (4) 

 

Using these equations, the values of b and k are 

calculated for each season. Further, in order to evaluate 

the performance of the model, statistical methods, viz., 

regression analyses, are performed which aid in 

computing its slope, intercepts, standard error, and p-

value. 
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3. Results and discussion 

 

3.1 Spatio-temporal variations of monthly SIC over 

Barents Sea 

The two decades 2000–2010 and 2010–2020 are divided 

into four lustrums: 2001–2005, 2006–2010, 2011–2015, 

and 2016–2020. The first five years are considered to be 

the base (background years), and the other successive 

three sets of five years are compared with it to understand 

the deviation of sea ice conditions from its initial stage. 

Or, in other words, anomalies in all the latter three sets 

are found by comparing them with the average of the 

former span (2001–2005). Values below zero indicate 

that the present duration consists of more SIC than the 

base duration. If the values are positive (above zero), the 

current period could not build more SIC compared to the 

base. In the case of October, November, and December, 

the period is divided into 2000–2004, 2005–2009, 2010–

2014, and 2015–2019. This is done so as to place 

October-December first in every winter season (for 

example, the timeline is taken as October 2000, 

November 2000, December 2000, January 2001, 

February 2001, and March 2001). Analyses have been 

carried out for all the months; however, spatial maps of 

SIC during December, January, February, and March are 

displayed in Figure 2. 

 

During December, the contrast is predominantly found 

over the Barents Sea. The regions above and east of 

Svalbard greatly experience a disparity. The difference 

indicates that during 2005–2009 (Figure 2a), the sea lost 

immense ice. This significant variation is also found 

above and to the east of Novaya Zemlya. As we move 

towards the right, as shown in the subsequent plots, it is 

clearly observed that the deviation has built up. The 

regions around Svalbard and portions below Franz Josef 

have highly lost sea ice during the time span of 2010–

2014 (Figure 2b). Apart from the Barents Sea, the 

difference is observed over the Kara and White Seas. 

During 2015–2019 (Figure 2c), the sea again failed to 

recover its lost sea ice conditions, making the contrast 

appear more intense. The Arctic Circle and the region 

near Svalbard also show a positive anomaly. December is 

an important month in the life cycle of Arctic sea ice in 

general, as it marks the beginning of the winter season in 

the Arctic region. During this month, the Arctic sea ice 

starts to freeze and form as the temperature drops. This 

process continues throughout the winter months, and by 

the end of winter, sea ice covers a large portion of the 

Arctic Ocean. The variation of sea ice near the land 

region makes one understand the land is yet to lose the 

heat it has absorbed during the summers. The land passes 

on its heat to the water nearby, causing the ice to melt 

away. As the latent heat capacity of water is quite high 

when compared to land/soil, the water tends to hold the 

heat for a prolonged period, which is thereafter passed to 

the nearby portions through the process of conduction 

with the help of wind and currents. This ultimately causes 

the ice to melt drastically. Recent winter warmings, when 

coupled with such transfer of heat (causing a decrease in 

albedo), inhibits the growth of sea ice. This prevailing 

situation not only hampers the growth of existing sea ice 

but also prevents the development of fresh ice. 

 

During January (Figures 2d, 2e, and 2f), the range of SIC 

anomalies is seen shifting. The highest value is +80, and 

the lowest is -20. This clearly indicates that the recent 

fifteen years; 2006–2020 (Figures 2d, 2e, and 2f), have 

not gained sea-ice over the Barents as much as during the 

years 2001–2005. The contrast is somewhat similar to 

that during December, but here the anomaly has 

experienced a horizontal shift (the nearing of higher 

difference towards higher latitudes, more towards the 

Svalbard region). The region of the sea, south of Svalbard 

and north of Novaya Zemlya, experiences tremendous sea 

ice loss. Even the region south of Barents shows a huge 

contrast that was not observed during December, 

especially the area around Kolguyev island, over the 

White Sea, and around the Kanin Peninsula. During 

2011–2015 (Figure 2e), the contrast remained similar, 

with little intensification around the islands of Svalbard 

and Novaya Zemlya. Sections over the Arctic Circle are 

also found to have positive anomalies, meaning the base 

period, 2001–2005, had more sea ice compared to 2011–

2015. The lateral (spatial) spread of positive differences 

in SIC is greater during this period. By 2016–2020 

(Figure 2f), the contrast reaches up to +80 near the 

northwest and southeast sectors of the sea. The plot 

during this span is extremely alarming, as nowhere over 

the sea has there been a visible effort by the atmospheric 

conditions to promote the growth of sea ice. The 

incapability of the atmospheric environment to favour the 

development of sea ice may be potentially due to the 

development of sea level pressure patterns in January. 

Researchers have already confirmed that the variation or 

the developments of such pressure patterns are due to 

changes in moisture which occur due to atmospheric 

transport from remote areas other than the Arctic (Zhao et 

al., 2022). Unlike December and January, February 

shows a different behaviour. The values from 2006 to 

2010 (Figure 2g) were found to be significantly lower 

than those from 2001 to 2005. However, as the years 

progressed to 2011–2015, the differences were found to 

be less (Figure 2h) than they were between 2001 and 

2005. However, as the years passed to reach 2011–2015, 

the difference was found to be less. And finally, by 2016–

2020 (Figure 2i), the sea has lost tremendous amount of 

concentration, making the early years, 2001–2005, higher 

in value. February is typically one of the coldest and 

snowiest months in the region, and SIC is generally at its 

highest during this time. However, there has been a 

significant decline in Arctic SIC in recent years due to 

climate change and other factors. This decline has also 

affected the Barents Sea, and the sea ice concentration 

may vary from year to year depending on these factors. 

 

In most cases, the timeline of sea ice melt is determined 

by whether the circulation patterns are strong or weak. 

March has always been a key period in the lifecycle of 

sea-ice growth. This month has the highest percentage of 

SIC in the sea ice life cycle during all the considered 

years. During 2006-2010 (Figure 2j), the contrast in SIC 

is similar to that during January, except for the fact that 

the south portion of the sea does not experience much 

difference, e.g., the White Sea. However, the area near 

Novaya Zemlya Island is seen to develop extreme 
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anomalies (positive) with the passage of years. By 2011–

2015 (Figure 2k), SIC shows significant variation in 

positive anomalies to the east of Svalbard and Novaya 

Zemlya. By 2016–2020 (Figure 2l), the existing 

fluctuation is seen deepening. Overall, majority of the sea 

remains within the ~0 anomalies, stating that the years 

2006–2020 are not much different from 2001–2005 in the 

formation or decay of sea-ice over the Barents Sea. 

March is often depicted as the winter peak month. 

Though recently it has been known that winter warming 

is quite high compared to summers. It is recorded that 

almost 50% of sea-ice reduction occurred in the month of 

March from 1979–2020. Additionally, during this month, 

significant ocean heat transport at the Barents is observed 

(Wang et al., 2019). Large amounts of heat get 

transported to the Barents Sea by Atlantic waters and by 

the Norwegian coastal current inflows. Unlike other 

months that have been discussed so far (December, 

January, February, and March), during April the scenario 

is different. The entire sea experiences an anomaly 

greater than zero. The entire west of Novaya Zemlya 

experiences a contrast. This variation is further observed 

near Kolguyev Island, the Kanin Peninsula, and also over 

the White Sea with the passage of time. Additionally, 

during 2006–2010, the area around Svalbard is found to 

be extremely devoid of any major anomalies. In fact, the 

south of the island experiences some negative anomalies 

ranging ~-15 proving that the years 2006–2010 have seen 

some development of sea ice when compared to the years 

2001–2005. By 2011–2015, the constant was noticeable 

around Svalbard but not extremely significant. However, 

the west boundary of Novaya Zemlya is seen to intensify 

SIC to a greater extent. By 2016–2020, this depth of 

anomaly/variability will have further thickened. It is 

understood from the plots that the sea did not experience 

a favourable situation during the successive years for the 

ice to grow. 

 

 

Figure 2. Spatial anomaly of SIC over Barents Sea during December in 2005-2009, 2010-2014, and 2015-2019 

during a), b) and c) December d), e), and f) January g), h), and i) February j), k), and l) March 
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The whisker plot (Figure 3) illustrates the variation in the 

life-cycle of SIC over the Barents Sea during the span of 

2000–2020. The range of SIC lies between 0 and 70%. 

As observed over the Arctic Sea, the Barents Sea also 

experiences its minimum sea-ice condition during 

September (highlighted in pink) and maximum during 

March (highlighted in blue). Months: April–September 

can be demarcated as the decay phase and October–

March as the growth phase of sea ice. The diamond dots 

in the graph illustrate outliers, which are greatly observed 

during the decay process. The range during April is fairly 

broad, with a mean greater than 40%. The wideness in the 

range of SIC is seen to be decreasing thereafter. 

Correspondingly, the mean value is also found to be 

dropping. By June, the drop in SIC is significant, with the 

range falling below 10% by the month of September. The 

range, median, and mean are the lowest for this month, 

which is as expected. After September, SIC is seen to 

gradually build up. By December, the range in SIC is 

seen to be highly fluctuating, covering a wide range of 

concentrations. Soon in January, the median and mean 

values of SIC are seen to be greater than those during 

December; however, there is no noticeable incline in the 

range of SIC. Nevertheless, during January and also 

during February, the median remained the same. This 

indicated that during both months the values were almost 

the same, which divided the distribution between the 

lower half and the higher half. By March, which is also 

known as winter maxima, the median and mean are at 

their highest.  

 

 

Figure 3. Temporal variability of SIC over the 

Barents Sea during summer (April-September) and 

winter (October-March) for the span of 2000-2020 

 

3.2 Spatio-temporal variations of monthly SIT over 

Barents Sea 

The spatial anomaly plot over Barents demonstrates the 

difference in SIT averages of 2016–2020 from 2011–

2015. Unlike the anomaly plot of SIC, where two decades 

were divided into quadrants of five years each, in this 

case, the span is limited to 2011–2020 due to the 

unavailability of SIT data. From the anomaly plot, the 

general observation noted is that the central region of the 

Barents Sea remains devoid of many fluctuations (the 

range within zero). During December (Figure 4a), the 

horizontal section connecting Svalbard and Franz Josef is 

observed to have a positive anomaly of +0.35 m, stating 

that the years 2010–2014 had more SIT compared to that 

during 2015–2019. Additionally, the region west of Kara 

also experiences a difference. However, it is clearly 

evident that the south of Barents Sea remains devoid of 

any contrast, meaning the thickness has remained almost 

the same during the considered span over the region. By 

January (Figure 4b), the difference that had been 

observed around Svalbard during December had now 

intensified. The southeast corner of Novaya Zemlya also 

shows a variation, meaning all these places have lost 

tremendous ice during January 2016–2020. Even though 

it is alarming to notice that high positive anomalies are 

observed over the Arctic region, by February (Figure 4c), 

the entire east side of the Barents Sea had lost excessive 

sea ice. Kolguyev Island and the Kanin Peninsula, along 

with a few sections of the Arctic Circle, now show 

fluctuations. Regions at higher latitudes show positive 

anomalies, indicating that the sea gains back its lost 

thickness during 2016–2020. March (Figure 4d), which is 

also known as the month with maximum SIT, shows an 

equal contribution of both positive and negative 

anomalies. The inner sea consists of more positive values, 

whereas the outside of it has more negative values. The 

peripheral changes will definitely contribute to the sea 

making more sea ice. Therefore, by April, the sea had 

more negative anomalies. This clearly indicates that 

during April 2016–2020 (Figure 4e), the thickness of sea 

ice was definitely more compared to that during 2011–

2015. However, by May (Figure 4f), the region closer to 

the land area—Svalbard, Franz Josef, Kolguyev Island, 

etc.—had gradually experienced positive values. From 

the plots, it can be substantiated that during 2016–2020, 

during the onset of winter (December, January, and 

February); the sea could not build up ice that was lost 

during summers. In March, April, and May, significant 

improvement is seen during the span. The probable 

reason might be the role played by atmospheric forcing, 

which has acted in favour of sea-ice growth. Still, it can 

be overlooked that the growth is quite low and hardly 

reaches 1 m. All the negative anomalies over the sea fall 

within the range of -0.35 to -0.25 m. The values are very 

low when compared to the ice, sea losses. However, in 

the larger picture, such small development in SIT can add 

a lot of importance to the cryospheric conditions over the 

region. 
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Figure 4. Spatial anomaly of SIT over Barents Sea during a) December b) January c) February d) March e) 

April and f) May 2010-2020 

 

 

Figure 5. Temporal variability of SIT over the 

Barents Sea during December-May for the span 2010-

2020 

The temporal variation in SIT over the Barents Sea is 

depicted in Figure 5. The range over the sea varies 

between 0.7 and 1.6 m, including some outliers that go 

beyond 1.6 m. The plot clearly shows how the range 

increases as the winter months progress. The winter 

maximum is observed in the month of March. However, 

in Figure 5, the range during March and April seems to 

be almost the same, indicating that the developed 

thickness could not vanish away immediately with the 

onset of summer. Even the median in March is found to 

be higher than that in April. This indicates that the 

majority of pixels will have higher values of SIT during 

the next month. SIT data during the summer months is 

not available, therefore the transformation of the sea ice 

during those periods could not be observed. Anyway, the 

trend of its decay would be very similar to that of SIC, 

which has already been understood in the previous 

section. 

 

3.3 Variability in Sea Ice Concentration with respect 

to Sea Ice Thickness 

The histogram plot of SIC in Figure 6a has a range of 87–

97%. Here the SIC values are obtained by averaging the 

data over all the years of each pixel of the respective 

month. For example, if we consider January, all the SIC 

values of January months are combined (averaged) for 

2010–2020 (11 years), and later they are binned at 70 

counts. The outputs obtained are displayed in Figure 6a. 

From the plot, it is evident that during January, February, 

and March, the lines overlap with each other. During 

January, SIC is observed to have a low percentage 

compared to the other two winter months, February and 

March. Due to the binning applied to the variable (SIC), 

the maximum count observed is ~5. However, the SIT 

plot (Figure 6b) shows a significant rise in thickness by a 

value of ~0.5 m with the passage of each month. The 

range of SIT here lies between 0.2 and 3.5 m. Figure 6b 

represents two Y axes, with one Y axis denoting the 

number of points (counts) having a particular thickness, 

the other Y axis showing the density of SIT, and the X 

axis representing SIT in metres (m). The density plot here 

represents the distribution of SIT. The highest peak, with 

a thickness of 1.2 m, is obtained in January.
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Figure 6. Histogram of a) Sea Ice Concentration and b) Sea Ice Thickness during January, February and March 

and c) Linear regression analysis of Sea Ice Concentration (SIC) with respect to Sea Ice Thickness (SIT) over 

Barents Sea during winter months (October-April) for the span 2010-2021 

During February, the maximum peak slightly shifts to 

attain the value of 1.5 m. The shift in peak helps one 

understand the increase in the depth of sea ice, which is 

obtained as a result of favourable conditions (especially 

during winters). Furthermore, the highest value had fallen 

to 1.7 m by March. Here, the density distribution during 

January and February is observed to be almost the same, 

which is thereafter followed by a slight decline during 

March. It is worth noting that the SIT of about 2 m in 

March over the Barents Sea is seasonal. FYI or MYI 

refers to thick ice greater than 2 m in thickness. In the 

analysed plots displayed in Figure 6a, the frequent 

appearances of SIC within the range of 90–100% are seen 

to be in proper agreement with the shift of thick sea ice 

(Figure 6b).The winter monthly variation of SIC with 

respect to SIT over Barents for the span of 11 years is 

illustrated in Figure 6c. From the plot, it is evident that 

the range of SIC varies between 0-50 % and that of SIT 

varies between 0.2-2m. SIT and SIC own a high linear 

correlation and also have noticeable seasonal variation 

characteristics. When SIC increases, SIT also increases, 

and vice versa. Over the Barents Sea, the r2
(SIC, SIT) = 0.62 

(p < 0.05), indicating a strong relationship between the 

two quantities. 

 

3.4 Numerical Logistic Curve Model 

 

3.4.1 Logistic SIC decay process averaged over 

summer months (April-September) 

From the literature, it is clearly evident that atmospheric 

changes highly influence the development of cryospheric 

features (e.g., Qin and Ding, 2010). The Earth's climate 

system is a complex and dynamic system, and changes in 

one component can have far-reaching effects on others, 

thereby influencing the sea ice conditions. This 

underscores the importance of understanding and 

monitoring the entire system to accurately predict future 

trends and mitigate the impacts of climate change. 

However, here, the work revolves around understanding 

the standard numerical logistic curve model for predicting 

the fate of sea-ice conditions. Figure 7 shows the decay of 

sea ice during the summer months, i.e., from April to 

September. The time series of model-predicted SIC and 

satellite-observed SIC is drawn so as to understand the 

closeness of these parameters. The predicted SIC is 

calibrated by the numerical formula of the logistic curve 

model using the methodology discussed in the 

aforementioned section. From the visual observation, it is 

clearly evident that the calculated b matches well with the 

satellite-derived SIC.
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Figure 7. Temporal variability of SIC over Barents Sea during summer (April-September) for the span a) 2001-

2010 and b) 2011-2020. 

 

For the years 2001–2010 (Figure 7a), it is seen that the 

predicted SIC is seen to overlay with satellite data for 

several months. Apart from that, the percentage 

difference is calculated to understand the extent of the 

difference between the two SICs. Here, points during 

April, May, and July are an exact match. The percentage 

difference between the predicted SIC for these three 

months and the satellite-derived SIC is found to be 

8.82%, 1.27%, and 8.49%, respectively. The highest 

difference between the values was noted in the month of 

June (13.98%), which is not significantly visible in 

Figure 7. However, the predicted SIC clearly shows the 

summer life cycle of SIC. It is highest in the month of 

April, with a range of 50–40%, and gradually declines by 

September, which is also recorded as the month of sea-ice 

minimum. However, the regression analyses performed in 

the subsequent sections add to our understanding of the 

method and its closeness to the satellite-drawn 

observations. During the recent decade, 2011-2020 

(Figure 7b) predicted SIC and satellite SIC are seen to 

line up well with each other, as in the case of 2001-2010 

(Figure 7a). The two datasets clearly show the decay of 

sea ice from April to September. April is the month with 

the highest value, and September is the month with the 

lowest value, which is the existing trend of sea ice over 

the region during the summer phase. Figure 7b shows the 

real scenario prevailing over the region, with the highest 

difference between the two SICs in the month of July and 

the lowest in August. The highest closeness was observed 

at 0.49% in the month of August. The match between the 

starting and ending values of the sea ice decay life cycle 

clearly demonstrated that the trend could be correctly 

determined to a greater extent well in advance. The 

highest difference between the two was with value 

reaching 41.73% in the month of July. The difference 

observed in this case is phenomenally high, which might 

be due to other atmospheric forcings that are not currently 

incorporated in the numerical logistic curve equation. 

July, being the mid-month of summer, might have 

experienced tremendous warming during the recent 

decade, which has made the sea undergo significant 

melting beyond the predicted decay. During May and 

June, the match between the two values was also high, 

with values of 18.35% and 18.68%, respectively. August 

also has the second-largest SIC difference, with 25.90%. 

Figure 7 clearly states that during this period, the 

predicted SIC works fine over the region. 

 

3.4.2 Logistic SIC decay process averaged over winter 

months (October-March) 

Similar to the summer months (Figure 7), the standard 

logistic curve is also applied to the winter months (Figure 

8). Sea ice grows from October to March, with the 

maximum amount occurring in March. From Figure 8, it 

is evident that during both decades, predicted SIC is in 

line with satellite-obtained SIC except for few differences 

during few months. During the growth stage (winter 

phase), the lowest range of SIC (minimum SIC) is 

observed in the month of October and the maximum in 

the month of March. In Figure 8a, the predicted SIC is 

found to show the highest similarity with the satellite SIC 

during March and December, with a percentage 

difference of just 2.98% and 4.62%, respectively, 

between the two. However, the largest difference between 

the two quantities was seen during the month of 

November, with a percentage dissimilarity of 32.59%, 

which is not quite high but the highest amongst all the 

other winter months. Further, the second largest 

difference between the two SICs is observed in the month 

of February with a value of 12.00%, followed by January 

with a value of 10.61%. 

 

71



Journal of Geomatics   Vol.17, No.1, April 2023 

 

Figure 8. Temporal variability of SIC over Barents Sea during winter (October-March) for the span a) 2001-

2010 and b) 2011-2020. 

 

During the recent decade 2011–2020 (Figure 8b), the 

trend line of the predicted SIC is seen to match well with 

the satellite-obtained SIC. This nature of the time series 

during this decade indicates that the predicted SICs can 

be used to know the health of sea ice well in advance. 

However, the percentage differences between predicted 

SIC and satellite SIC is more during this span than during 

the previous span (2001–2010). The difference between 

the two SICs is the smallest during October, January, and 

February, with values of 5.97%, 0.31%, and 1.97%, 

respectively. For all the other months, the percentage 

difference is quite higher than 10%. However, here also, 

the highest is observed in the month of November, with a 

value of 38.97%. Apart from Figures 6 and 7, which give 

a visual interpretation of the closeness of SICs, regression 

analyses in the upcoming section provide a better 

understanding of the calibration of the standard logistic 

curve model in predicting the cryospheric variable, SIC. 

 

3.4.3 Regression analyses between predicted and 

satellite SIC during summer and winter months 

In order to validate the efficacy of the standard logistic 

curve during summer when sea ice undergoes decay, 

regression analyses are performed between the predicted 

SIC and satellite SIC, and the results are displayed in 

Figure 9. Similar to the previous section, where the 

model was applied over the span of each decade, i.e., 

2001–2010 and 2011–2020, here too the regression 

analyses are performed on similar timelines. Figure 9 

gives information about the closeness of the predicted 

and satellite-obtained SICs. The obtained coefficient of 

determination gives an understanding of the fit of 

predicted data with satellite-derived SIC. The calculation 

of the p-value here gives an understanding of the 

confidence level (in this case; 95%) that prevails between 

the two datasets. For years 2001–2010 (Figure 9a), r2 = 

0.88 between predicted SIC and satellite SIC. The 

coefficient of determination being greater than 0.5 

indicates predicted SIC is significant with satellite SIC. 

Similarly, during the span of 2011–2020 (Figure 9b), the 

coefficient of determination is greater than 0.5, with r2 = 

0.87. The marginal difference between the two predicted 

SICs with the satellite SIC was low during the previous 

decade of 2001–2010 compared to the latter period of 

2011–2020.  

 

Similar to summers, in order to validate the functioning 

of the model during winter, regression analyses are 

performed between predicted SIC and satellite SIC. Here 

also, the coefficient of determination value during 2001–

2010 (Figure 10a) reveals that the predicted value fits 

well with the satellite SIC. The r2 value in the former case 

is 0.80 with level of significance p<0.05, indicating that 

the confidence level is greater than 95%. However, 

during 2011–2020 (Figure 10b), r2 = 0.78 of the satellite 

SIC with the predicted SIC In this case, the range of r2 is 

~0.7, stating that the method can be adopted to determine 

SIC. 

 

 

 

Figure 9. Correlation between predicted and satellite SIC during summer (April - September) for the span a) 

2001-2010 and b) 2011-2020 
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Figure 10. Correlation between predicted and satellite SIC during winter (October-March) for the span a) 2001-

2010 and b) 2011-2020. 

 

3.4.4 Evolution of SIT and regression analyses 

between predicted and satellite SIT during December 

– April 

Apart from the implication of the logistic curve on the 

parameter SIC, we have tried to understand the further 

scope of this model by applying it to another sea-ice 

parameter, namely SIT. Looking at the general behaviour 

of thickness, the parameter is found to range between 0 

and 2 m, which is also well noted in the aforementioned 

section. Here, however, the model-obtained SIT is tested 

with the satellite-derived SIT to understand the closeness 

of the derived SIT. In terms of the trend line, the 

predicted SIT exhibits similar patterns to that of satellite 

SIT, indicating that the model works well on this 

cryospheric parameter as well. Additionally, the degree of 

closeness in the predicted SIT is seen to be good 

compared to that of the satellite SIT. From Figure 11a, it 

is evident that October is the month with the lowest SIT 

and March–April with the highest. However, when 

observing the satellite SIT, it is clearly evident that 

March has the highest SIT; the SIT during March is 

greater than that during April. While with the predicted 

SIT, April is found to show the highest value, indicating 

the development of sea-ice growth even during the onset 

of summer. This information may be misleading at times. 

While checking the difference in the value between 

predicted SIT and satellite SIT, March and April had a 

difference of about 2.95% and 6.93%, respectively. The 

highest difference between the two SITs was observed in 

the months of November and December, with values of 

21.17% and 19.42%, respectively. The difference in 

November is not much, which still indicates an 

appreciable match. Further computation of the percentage 

difference between the predicted SIT and the satellite-

obtained SIT revealed that the majority of the values were 

insignificant. For the months of October, January, and 

February, the differences between the SITs were 13.06%, 

16.35%, and 14.81%, respectively. Despite these 

differences between the two entities, the predicted values 

of SIT are more reliable.  

 

After observing the trend followed by the predicted SIT, 

it is vital to validate the closeness of modelled data with 

satellite data. This is done by performing linear 

regression analyses between the predicted SIT and the 

satellite SIT. Figure 11b displays the results of analyses 

performed between these SITs during December and May 

for the years 2011–2020. From Figure 11b, r2 = 0.75 for 

calculated SIT with satellite-derived SIT. The coefficient 

of determination values state that the calculated SIT 

matches well with the satellite SIT. From the above 

observations, it can be stated that the standard logistic 

curve model works fine for each month. Also, the model 

can be extended to incorporate more cryospheric 

parameters, as it is now proven that SIC and SIT work 

fine with the model. 

 

 

Figure 11. a) Temporal variability of SIT and b) correlation between predicted and satellite SIT over the Barents 

Sea during winter (October-April) for the span 2011-2020 
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4. Conclusions 

 

With the recently discovered process of Atlantification 

taking place over the Arctic region, the marginal 

Barents Sea has now gained special attention from 

researchers, as this sea serves as a gateway for the 

Atlantic water to merge into the Arctic region. This 

study paves a new quantitative statistical approach for 

a better understanding of the seasonal sea ice 

processes. The statistical approach used here is the 

standard logistic curve model, which is proven to be an 

outstanding tool for both the summer and winter 

seasons. The sea ice patterns show high monthly 

variability over the Barents Sea. In general, the sea ice 

grows from mid-September to mid-March and decays 

from mid-March to mid-September. In order to 

understand the existing nature of sea ice, two 

cryospheric parameters namely SIC and SIT are 

considered. The SIC over the region is seen to peak in 

winter and decrease to its lowest in summer. During 

the considered period, the Barents SIC is seen 

decreasing 87–97% with the passage of time. However, 

the decline is better explained by the parameter, SIT. 

Additionally, SIT revealed that there is intensification 

in thickness with each month's shift. The peak of SIT 

shifts from 1.2 to 1.5 m during January and February 

and from 1.5 to 1.7 m during February and March. The 

standard logistic curve model is selected to quantify the 

sea ice growth and decay processes during the two 

seasons.  For the summer months, the fitted SIC 

derived from the standard logistic curve model is in 

good consistent with the average satellite data every 

ten years (decade); 2001-2010 and 2011-2020. The 

rapid decline in the SIC pattern from mid-May to 

September is successfully characterized by the fitted 

(modelled) curves. For the winter months, the fitted 

SIC derived from the standard logistic curve model is 

in good dependence with the average true (satellite) 

data during the above-mentioned different time 

periods. The gradual increase in SIC from November 

to March is well reflected by these fitted curves. 

Further, mathematical validation of modelled obtained 

data is done with the satellite SIC with the help of 

regression analyses. The coefficient of determination 

(r2) values obtained for predicted SIC and satellite SIC 

during summer for the years 2001-2010 and 2011-2020 

are 0.88 and 0.87 respectively. Whereas during winter, 

these values correspond to 0.80 and 0.78 are for the 

above-mentioned years. Additionally, SIT is also 

predicted using this model. In this case, the duration is 

kept confined to December - April for the year 2011-

20. During these months, the fitted SITs derived from 

the model are in good support with the average satellite 

data during the decade. The same has been proven 

mathematically by deriving the coefficient of 

determination (r2) values between the predicted SIT 

and the satellite SIT. The correlation co-efficient value 

is 0.75 which is obtained between modelled SIT and 

satellite SIT for the months December - April for the 

years 2011-20. From the observations, it is clear that 

the model can be used to understand the state of sea 

condition to a large extent. This enhancement in the 

values is mostly due to considering individual ‘b’ 

values for each month, which compensates for the 

varying nature of sea ice features. 

 

This study promotes the understanding of sea ice - both 

in the x-y plane; SIC and z-plane; SIT in the marginal - 

Barents Sea. The modelled results are not only seen to 

match with the satellite data but are also seen to yield 

good r2 values, stating it can also be used to foresee the 

future scenario of the sea. Additionally, developing a 

numerical model like this helps in predicting sea ice 

behaviour well into the future. Additional development 

of the model by incorporating the external driving 

forces of sea ice - atmospheric and oceanic variables 

will help in accurately computing the future 

cryospheric conditions at the micro scale and macro 

scale. Future work may be to investigate more sea ice 

parameters using the same standard logistic curve 

model over different spatial and temporal domains.  
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