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Abstract: Groundwater is one the major sources of natural water being exploited excessively for various uses in India. 

Thus, it is very essential to monitor the spatial and temporal variability of groundwater quality. Geo-Statistical 

Interpolation using GIS has been considered as the best and most advanced method for the interpolation and prediction 

studies of groundwater pollution and quality, and is adopted universally. In this paper, ordinary Kriging with logarithmic 

data transformation has been used to interpolate and predict the spatial variation of groundwater quality parameters - EC, 

TDS, pH, Na+, Ca2+, Bi-Carbonate, Fluoride, Chloride, Sulphate and Nitrate using data pertaining to 48 well locations in 

the Dungarpur tehsil. Data was transformed and normalized using Logarithmic Transformation Method and 

Semivariograms were drawn and analyzed for selecting the suitable model. The best Semivariogram model was obtained 

based upon cross validation and on the lesser RMSE criterion and Coefficient of Determination. The results show that the 

best semivariogram model based on RMSE varied for each water quality parameter. For log transformed data Exponential 

model was found suitable for EC, TDS, Na+, TH etc.;  Spherical model for Ca2+ ; Chloride Gaussian Model for Chloride. 

For original or raw for non-transformed data Exponential Model was found suitable for Fluoride, Sulphate and Nitrate; 

and Gaussian Model for pH and Bi-Carbonates. 
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I. Introduction 

 

Water is crucial for the existence and propagation of life 

on earth. However, its reserves are depleting day by day 

due to either over exploitation and contamination through 

natural and anthropogenic agents or industrial activities. 

Groundwater quality is severely affected in the regions 

with low rainfall, high temperatures, and lithology with 

high concentration of various contaminants and chemical 

compounds such as Sodium, Fluoride, Bi-Carbonates, 

various other metals and their compounds. The extraction 

of ground water is increasing day by day due to limited 

amount of good quality potable water resources from 

which water is available to human beings. Further, the 

water quality of various surfaces water bodies has 

deteriorated day by day due to industrialization (Nas, 

2009). It is essential now that serious efforts must be made 

for sustainable development, management, monitoring and 

preparation of government policies for the development of 

ground water and its quality. In understanding the spatial 

and temporal variability in distribution of ground water 

quality parameters based upon the data known or collected, 

Geostatistics and Interpolation are universally accepted as 

most suitable methods. 

 

In the recent past, various researches used advanced 

methods of Statistics and Geo-Statistical Interpolation, 

IDW, Spline, Kriging, Global Polynomial Interpolation, 

Radial Basis Function etc. which proved very promising in 

the accuracy and prediction of unknown parameters from 

known parameters at variable levels (Shankar et al, 2018; 

Ali , 2019; Zeybek et al, 2020; Katipoğlu, 2021) 

The objectives of the study are to select suitable and 

appropriate spatial interpolation models and methods for 

studying the spatial variability of ground water quality 

parameters. Most commonly used methods of data 

transformation have been executed and analysed to predict 

the general trend of the spatial distribution of selected 

groundwater quality parameters in Dungarpur tehsil of 

Dungarpur district in southern Rajasthan, India. The 

performance and suitability of different Geo-Statistical 

data processing and semivariogram models has been 

assessed and ordinary Kriging has been employed for 

various ground water quality parameters to study their 

spatial variations and patterns. 

 

2. Study area, data used, materials and methods 

 

2.1. Study Area 

Dungarpur tehsil is situated in the north-western part of 

Dungarpur district, one of the southernmost districts of the 

state of Rajasthan in India (Figure 1) between 23° 20' 1.56'' 

N latitude and 73° 21' 6.70'' E longitude to 24° 0' 41.4144'' 

N latitude and 74° 22' 50.484'' E longitude. It shares 

political boundaries with the state of Gujarat in the south 

as well as in west direction. In 2022, the estimated total 

population of the district is 15,59,120 persons (as per 

aadhar uidai.gov.in December 2020 data).  

Dungarpur tehsil is a tribal dominated area being 

economically, socially and educationally backward. The 

estimated population of the tehsil in 2022 is 6,34,141 

persons. As per Census 2011, the total population of the 

tehsil was 4,95,423 persons residing in 98,876 households. 

It is a predominantly rural area with 90.4 percent of 

population living in 305 villages. In 2011, ST population 

comprised 77.71 percent of the total population. Main 

workers comprised only one-third of the population of the 

tehsil having gainful employment for more than 06 months 

in a year. The population is mostly dependent on 

groundwater for drinking requirements.  
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Figure 1.  Location of study area and sample well locations in Dungarpur tehsil. 

 

Occurrence of high fluoride in ground water is a matter of 

great concern. Particularly the areas adjoining blocks of 

Aspur, Dungarpur and Sagwara tehsils are severely 

affected by Flouride contamination in groundwater. The 

high amount of fluoride in the groundwater is reflected in 

the bone related diseases widely prevalent in the resident 

population. 

 

The overall geology of the area is highly complex. 

Dungarpur district is underlain mainly by hard rock 

formations such as Gneisss, Schists, Phyllites and Slates. 

The Fluorides in groundwater apparently originate from 

the rock formations.  

 

2.2. Data used 

A total number of 48 sites were selected using the water 

quality observation well locations used by the Ground 

Water Department (GWD), Rajasthan and mentioned in 

the ‘Water Quality Report of Pre-Monsoon 2014’, issued 

by the GWD (Figure 1). The well location sites were 

identified with help of their names  and searching their 

geographic latitude and longitude values by querying and 

identify tool on the GWD Assets layer in the ‘Rajdharaa-

Ground Water GIS’ Portal of the Government of 

Rajasthan. The pre-monsoon water quality data of 11 

parameters - Electric Conductivity (EC), Total Dissolved 

Solids (TDS), pH, Sodium (Na⁺), Calcium (Ca2+), Bi-

Carbonate (HCO3ˉ), Fluoride (Fˉ), Total Hardness (TH), 

Chloride (Clˉ), Sulphate (SO4
2) and Nitrate (NO3ˉ) - were 

taken from the above mentioned Water Quality Report.  

 

Since the primary objective of the study is to assess the 

performance of spatial interpolation models, only 

representative pre-monsoon data of the region has been 

used. The spatial variability of some of the 

physicochemical parameters may be altered due to the 

precipitation in the post monsoon season.    

3. Method of spatial correlation analysis 

 

3.1. Semi-variable function 

In statistics, semi variable function (Equation 1) is used for 

the calculation and understanding the pattern of spatial 

correlation, if the sampling data values are normally 

distributed and the skewness of the sample data value 

distribution lie within a range of - 1 to +1. (Hu et. al, 2009) 

 

Semivariogram analysis is the main tool to graphically 

represent the spatial correlation among the neighboring 

sample data values and observations (Bàrdossy, 1997). It 

shows the relationship between the lag distance on the 

horizontal axis and the semivariogram value on the vertical 

axis (Figure 2). Lag distance is the distance between the 

measurements of a particular property. The semivariogram 

value increases from low to high values indicating higher 

spatial autocorrelation at the small lag distance (Nayanaka 

et al., 2010). 

 

𝛾(ℎ) =
1

2𝑁(ℎ)
∑ [ 𝑍 (𝑥𝑖)  − 𝑍(𝑥𝑖 + ℎ )]2𝑁(ℎ)

𝑖=0   

.......Equation (1) 

 

Where, 

𝛾(ℎ)  = Semi-Variable Function, 

𝑍 (𝑥𝑖)  = Sample or Data Value, 

𝑍(𝑥𝑖 + ℎ ) = Sample or data value with ‘h’ distance 

from 𝑥𝑖 , 

𝑁(ℎ) = No. of attribute pairs that are separated by distance 

‘h’. 

 

 

Degree of spatial correlation can be evaluated by 

calculation of nugget effect which is the ratio of nugget to 

sill
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Figure 2. Semi-Variogram 

 

3.2. Common Semi-Variogram Model Fitting 

Equations 
The equations of some of the commonly used models for 

the fitting of semi-variograms are: 

 

a) Spherical model  

 

𝛾(ℎ) = 𝐶(
3ℎ

2𝑎
−  

1 

2

ℎ3

𝑎3) , if h ≤ a 

 

𝛾(ℎ) = 𝐶 , 𝑖𝑓 ℎ > 𝑎 

.......Equation (2) 

 

Where,  

a = Range or distance between correlated and uncorrelated 

data, 

h   = Lag distance and  

C ≠ 0 

 

If any two points are separated by a distance greater than 

range ‘a’, then the corresponding points or data locations 

are independent of each other. The value of the Sill ‘C’ is 

the value of the variogram for the distances greater than 

the range. It is equal to 𝐶(0), the variance of the random 

variable (Bàrdossy, 1997) 

 

b) Exponential model 

𝛾(ℎ) = 𝐶 (1 − 𝑒−
ℎ
𝑎) 

....... Equation (3) 

Where,  

a = Range or distance between correlated and uncorrelated 

data, 

h   = Lag distance and  

C ≠ 0 

 

In case of exponential model all the random variables are 

supposed to be dependent. But there is an effective range 

‘3a’ such that random variables related to points more 

distant than ‘3a’ can be treated as independent. The Sill ‘C’ 

is equal to ‘C(0)’, the variance of the random variable 

(Bàrdossy, 1997). 

 

c) Gaussian model 

𝛾(ℎ) = 𝐶(1 − 𝑒
−

ℎ2

𝑎2   ) 

.......Equation (4) 

 

 

Where,  

a = Range or distance between correlated and uncorrelated 

data, 

h   = Lag distance and  

C ≠ 0 

 

Again, in Gaussian model the Sill ‘C’ is equal to ‘C(0)’, 

the variance of the random variable. Parameter ‘a’ is again 

related to effective range of the variogram. There is a limit 

to the effective range in Gaussian model which is equal to 

‘√3a’ (Bàrdossy, 1997). 

 

4. Interpolation method 

 

There are two most common categories in which statistical 

interpolation methods viz. Deterministic and 

Geostatistical. (Chen et al., 2013) Geo-statistics can be 

regarded as a collection of numerical techniques that deal 

with the characterization of spatial attributes employing 

primarily random models in a manner similar to the way in 

which time series analysis characterizes temporal data 

(Olea et al., 2012). It deals with spatially autocorrelated 

data that have a basic structure or spatial patterns which 

can be manifested in semivariogram analysis. 

 

Kriging is a Geostatistical interpolation method used to 

study and predict the values for the locations where no data 

is available, on the basis of data collected and measured 

known locations. Kriging also facilitates in the calculation 

of the uncertainty of error and estimation of accuracy in 

the surface of values generated. Moreover, various 

researchers have found that Kriging provides better results 

as compared to other deterministic and stochastic methods. 

Therefore, Kriging has been selected for the present study. 

 

4.1. Kriging  

Kriging method works on the principle of existence of 

spatial autocorrelation for the application of geostatistics. 

To study the spatial pattern of the data values and 

parameters, semivariograms are used as a descriptive tool 

(Goovaerts, 1999). The spatial dependence between 

measured points is calculated on the basis of the distance 

between these points with the help of semivariance 

(Tatalovich, 2006). Thereafter, the fitting of 

semivariograms is done using different models such as 

Gaussian, Spherical and Exponential to check the best 

suitable model to be adopted for the study and to generate 

optimum interpolation weights (Burroughs and 
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McDonnell, 1998). Kriging is a very flexible interpolator 

that can be exact or smooth. It allows a variety of output 

surfaces including predictions, prediction standard errors, 

and probability (Johnston et al., 2004). Kriging technique 

eases out the optimal, unbiased estimation of the 

regionalized variables of unsampled sites with the 

properties of the semivariogram, using initially taken data 

values. (Mehrjardi et al., 2008). 

 

4.2. Logarithmic transformation 

To perform Kriging operation the data value distribution 

of random variable which is taken must be normally 

distributed and follow stationarity principle. But it may not 

be practically necessary. To account for the non-normality, 

the mathematical process of data transformations are used 

such as ‘Logarithmic’ transformation. Logarithmic 

transformation is basically a class of mathematical 

operation in which the log values of all the random 

variable values are taken to make the whole distribution 

follow normality principle or comes closer to it. In this 

study natural logarithmic transformation has been used for 

all different water quality parameters whenever the data 

distribution for any particular parameter was not found 

normally distributed by taking the natural logs of all the 

individual parameter values (after Osbourne, 2002). 

  

4.3 Cross-Validation  

Generally, the method used for the validation of 

interpolation processes is called Cross-Validation (Voltz 

and Webster, 1990). The key procedure in the process of 

cross-validation is the temporary removal of one data point 

and the removed point is estimated with the help of 

remaining data points, thereafter the difference between 

the actual and estimated values is calculated. This 

procedure is repeated for all the remaining set of data 

points. 

 

In this study, the cross-validation of interpolation has been 

performed for all the water quality parameters on the basis 

of least Root Mean Square Error (RMSE). 

 

5. Methodology 

 

Suitable hydro geochemical parameters for modeling the 

ground water quality have been selected based on literature 

review (after McNeely et al., 1979). Geo-statistical 

analysis (Ordinary Kriging) has been used for spatial 

interpolation to model the spatial distribution of 

groundwater chemistry.  

 

Geostatistical analysis has been implemented in the 

following three steps: 

 Semivariogram creation and analysis. 

 Validation of Semivariogram models. 

 Generation of the groundwater quality prediction 

surfaces and maps. 

 

Geostatistical Wizard of ArcGIS 10.5 was used for the 

exploratory data analysis, data transformation, and 

semivariogram analysis. 

 

RMSE criterion has been used for comparison between the 

different semivariogram models and data transformation. 

The smallest value of RMSE indicates the most suitable 

model for the data. Figure 3 illustrates the methodological 

workflow of the study.  

 

 
Figure 3.  Methodological flowchart 

 

6. Result and discussion 

 

Distribution Characteristics 

The following tables summarize the distribution 

characteristics of the selected hydro-geochemical 

parameters based on raw and log transformed data. 

Descriptive statistics describing distribution based on 

natural log transformed and raw untransformed values has 

been given in Tables 1. 

 

Results reveal that the raw data distributions of EC, TDS, 

TH, Na+, Cl¯ and NO3
¯ were highly positively skewed, 

whereas those of pH, Ca2+, F¯, HCO3¯, CO3
2-  and SO4

2- 

were more or less normally distributed. The natural log 

transformed distributions of all the parameters obeyed 

normal distribution. The acceptable range of skewness 

considered was -2 to + 2 and the acceptable range of 

kurtosis considered was -3 to +3 (after Garson, 2012). 
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Table 1. Descriptive statistics of hydro-geochemical parameters for raw and log transformed distribution. 

Indices 

Minimum Maximum Average Standard 

Deviation 

Skewness Kurtosis 

lgN Raw lgN Raw lgN Raw lgN Raw lgN Raw lgN Raw 

EC 2.66 460 3.38 2390 2.9 835.73 0.14 335.59 0.98 2.42 1.35 8.75 

TDS 2.40 252 3.12 1315 2.65 472.10 0.15 193.74 0.96 2.21 1.07 6.76 

pH 0.89 7.8 0.99 9.7 0.93 8.62 0.02 0.40 0.12 0.35 1.46 1.72 

TH 2.0 100 2.83 680 2.36 245.93 0.16 99.44 0.39 1.93 0.59 6.50 

Na+ 1.46 29 2.40 251 1.87 81.19 0.19 37.86 0.06 1.92 0.03 7.31 

Ca2+ 1.30 20 1.95 90 1.61 45.29 0.20 19.83 -0.14 0.44 -1.16 -0.91 

F¯ -0.92 0.12 0.25 1.8 -0.10 0.93 0.26 0.49 -0.72 0.49 0.59 -0.8 

Cl¯ 1.63 43 2.72 525 2.04 126.67 0.21 79.85 0.78 2.93 0.85 12.41 

HCO3¯ 1.38 24 2.58 378 2.20 178.29 0.22 80.90 -0.98 0.75 3.0 0.15 

SO4
2- 1.04 11 2.15 141 1.57 46.42 0.29 33.05 0.13 1.39 -0.54 1.25 

NO3
¯ 0 1 2.06 116 1.24 27.35 0.44 29.06 -0.47 2.08 1.29 3.84 

 

The log normal values of EC range between 2.66 to 

3.38 μScm−1; for TDS range between 2.40 to 3.12 mg/l; 

for pH range from 0.89 to 0.99 ; for TH range from 2 to 

2.83 mg/l ;  for Na+ range from 1.46 to 2.40 mg/l ; for Cl¯ 

range from 1.63 to 2.72 mg/l ; and for NO3
¯  range from 0 

to 2.06 mg/l. 

 

The log transformed values of  Ca2+ range from 1.30 to 

1.95 mg/l ; for F¯ range from -0.92 to 0.25 mg/l ; for 

HCO3¯range from 1.38 to 2.58 mg/l ; and for SO4
2-  range 

from 1.04 to 2.15 mg/l. The raw values of EC range from 

460 to 2390 𝜇𝑆𝑐𝑚−1 ; that of TDS range from 252 to 1315 

mg/l ; and that of TH range from 100 to 680 mg/l. The raw 

values of Na+  range from 29 to 251 mg/l ; that of Ca2+  

range from 20 to 90 mg/l ; that of F¯ range from 0.12 to 1.8 

mg/l and of Cl¯range from 43 to 525 mg/l. The raw values 

of HCO3¯ range from 24to 378 mg/l, that  of SO4
2-   range 

from 11 to 141 mg/l and of NO3
¯ range from 1 to 116 mg/l. 

 

Higher spatial variability, with pockets of extremely high 

concentration, as reflected in the range of raw values, high 

standard deviation, high positive skewness and kurtosis, is 

observed in EC, TDS, TH, Na+, Cl- and NO3
-However 

positive skewness and leptokurtic distribution indicates 

higher concentration of values towards lower end of the 

scale. The distribution of Ca2+, F-, HCO3¯ and SO4
2-   is 

normally distributed. However the range and standard 

deviation values indicate high spatial variability in 

concentration of these parameters tooacross the tehsil.  

 

Semivariogram creation and validation of models 

Attempt has been made to identify the best optimum 

model by comparing the Spherical, Gaussian and 

Exponential model for both raw data distributions as well 

as natural log normalized data distributions for all the 

twelve indices. The minimum Root Mean Square Error 

(RMSE) values across different models (Gaussian, 

Spherical and Exponential variogram models using raw 

and log transformed data) have been compared for each 

parameter to identify the most suitable model. The RMSE 

values obtained for all water quality parameters for 

different Semivariogram models have been given in Table 

2.

Table 2. Best fit Semivariogram model for the selected water quality parameters (bold and asterisk indicates lowest 

RMSE). 

Parameters 

Angle Tolerance Ordinary Kriging 

(in°) Model on Raw  Data  Model on Log Transformed Data 

 
Spherical Exponential Gaussian Spherical Exponential Gaussian 

EC 45 329.53 312.91 412.35 321.73 306.19* 378.78 

TDS 45 182.14 171.14 222.6 178.02 167.60* 209.53 

pH 45 0.3463 0.3426 0.3351* 0.3486 0.3379 0.3381 

TH 45 107.2 101.7 134.76 106.3 100.76* 102.46 

Na+ 45 32.89 31.42 36.49 32.66 31.41* 32.16 

Ca2+ 45 18.96 19.26 19.21 18.95* 19.28 19.25 

F¯ 45 0.303 0.288* 0.349 0.319 0.309 0.311 

Cl- 45 89.93 83.66 95.34 87.84 83.46 80.52* 

HCO3
- 45 73.75 71.54 71.29* 74.43 72.44 80.71 

SO4
2- 45 26.97 26.57* 27.77 28.36 27.23 29.95 

NO3
¯ 45 19.7 18.07* 24.9 22.44 20.05 22.33 
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The best semivariogram model varies for each water 

quality parameter. Exponential model of logarithmically 

transformed data was most suitable method for EC, TDS, 

Na+ and TH. For Ca2+ Spherical model for logarithmically 

transformed data was found suitable. For Clˉ Gaussian 

model of logarithmically transformed data was found 

suitable. For F¯, SO4ˉ, and NO3ˉ the Exponential model 

with original (raw) data has been found most suitable. The 

Gaussian model with original data has been found most 

suitable for pH and HCO3ˉ. The best fit Semivariance 

models have been illustrated in Figure 4 (a - k). 

The spatial structure indices of the best fit Semivariogram 

model selected for each parameter have been summarized 

in Tables 3. The EC shows high spatial correlation, and 

there is no nugget effect, which has a range of 0.947 

degrees.  TDS also shows high spatial correlation with zero 

nugget effect and effective range of 0.965 degrees. The pH 

shows high spatial correlation, 0.09% nugget effect and in 

effective range of 3.662 degrees. TH also shows high 

spatial correlation with zero nugget effect, where range is 

9.051 degrees. 
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Spatial structure analysis 

Na+ shows high spatial correlation, and there is no nugget 

effect, which has a range of 1.089 degrees. Values of Ca2+ 

also show high spatial correlation with zero nugget effect 

and effective range of 3.557 degrees. F¯ shows high spatial 

correlation, zero nugget effect in effective range of 2.667 

degrees. The values of Cl¯ also show high spatial 

correlation with 0.1% nugget effect, where range is 0.498 

degrees. 

 

HCO3
¯ data shows high spatial correlation, and there is no 

nugget effect, which has a range of 5.225 degrees. SO4
2- 

also shows high spatial correlation, zero nugget effect in 

effective range of 1.482 degrees. NO3
¯ also shows high 

spatial correlation with zero nugget effect, where range is 

6.733 degrees. 

The basis for the describing the spatial correlations in the 

values of different indices as high spatial correlation is that 

if the nugget effect is less than 25 percent it suggests that a 

large portion of the variance in data is introduced spatially 

and thus emphasizes a strong spatial dependence of the data 

or variable. A high nugget effect (greater than 75 percent) 

indicates weak spatial dependency (Mutuma, 2017). Thus 

all the geochemical parameters are highly spatially 

correlated. 

 

Generation of ground water quality prediction surfaces 

and analysis 

 

The interpolation surfaces generated by Kriging with 

optimal parameters models are shown in Figure 5 (a) & 

(b). The interpolation surfaces are smooth and show 

regional variation patterns corresponding to the 

hydrogeological conditions in the region.  

Table 4 shows the correlation (r) among various water 

quality parameters. Table 5 shows the Coefficient of 

Determination (R2) between the raw and predicted or 

interpolated values of the different water quality 

parameters. The measured values explain 20% to ~80 

percent variability in predicted values. 

 

  

Table 3. Spatial structure indices of the selected parameters for the best fit Semivariogram 

Parameters Model Transformation 

Indices 

Nugget Sill Nugget/Sill 

Nugget 

Effect 

(%) 

Range 

(Decimal 

Degrees) 

EC Exponential lgN 0 0.132 0 0 0.947 

TDS Exponential lgN 0 0.139 0 0 0.965 

pH Gaussian Raw 0.0001 0.113 0.0009 0.09 3.662 

TH Exponential lgN 0 0.169 0 0 9.051 

Na+ Exponential lgN 0 0.23 0 0 1.089 

Ca2+ Spherical lgN 0 0.184 0 0 3.557 

F¯ Exponential Raw 0 0.241 0 0 2.667 

Cl¯ Gaussian lgN 0.0003 0.257 0.001 0.1 0.498 

HCO3¯ Gaussian Raw 7.8063 7814.12 0.001 0.1 5.225 

SO4
2- Exponential Raw 0 1433.6 0 0 1.482 

NO3
¯ Exponential Raw 0 1084.7 0 0 6.733 

 

Table 4. Correlation matrix of the selected water quality parameters. 

Correlation 

Coefficient 
EC TDS pH Clˉ SO4

2ˉ HCO3ˉ NO3ˉ Fˉ TH Na+1 Ca+2 

EC 1                     

TDS 0.99 1                   

pH -0.48 -0.43 1                 

Clˉ 0.9 0.87 -0.421 1               

SO4
2ˉ 0.7 0.77 -0.188 0.535 1             

HCO3ˉ 0.63 0.58 -0.53 0.384 0.186 1           

NO3ˉ 0.419 0.515 -0.095 0.17 0.61 0.145 1         

Fˉ 0.234 0.254 -0.182 0.017 0.391 0.132 0.53 1       

TH 0.91 0.88 -0.6 0.82 0.63 0.603 0.36 0.26 1     

Na⁺ 0.86 0.171 -0.238 0.79 0.62 0.548 0.248 0.04 0.6 1   

Ca2⁺ 0.65 0.66 -0.255 0.57 0.51 0.355 0.398 0.17 0.71 0.37 1 
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Table 5. Coefficient of Determination (R2) between measured and predicted value of various water quality 

parameters 

Parameters EC TDS pH TH Na+ Ca2+ Fˉ Clˉ HCO3ˉ SO4
2ˉ NO3ˉ 

R2 0.4 0.5 0.6 0.2 0.6 0.38 1 0.2 0.47 0.6 0.79 

 

The estimation of EC shows that medium to high levels of 

EC are found in the southern, north-eastern, northern parts 

of the Dungarpur tehsil which can be contributed to high 

levels of salinity and high mineral percentage due to the 

ionization and solubilization taking place in ground water 

aquifers in these areas. Strong positive association of  EC 

occurs with TDS (r = 0.988), TH (r = 0.91), Cl- (r = 0.898),  

and Na+ (r = 0.856).  EC also moderately positively 

correlates with levels of  SO4
2-  (r = 0.695) Ca2+  (r = 0.646) 

and HCO3
- (r = 0.634).  

 

The distribution surface of TDS reveals that the high 

concentrations are found in the southern, north-eastern 

and northern parts of the tehsil. High levels of TDS 

strongly correlate with occurrence of high levels of Cl- (r 

= 0.868), SO4
2-   (r = 0.771) and TH  (r = 0.881). Moderate 

positive association occurs with Ca2+ (r = 0.662) and 

HCO3- (r = 0.583). The highest occurrences 

predominantly correspond with barren, rocky wasteland 

region. Thus lithology may be a significant factor for the 

observed spatial distribution.  

 

Concentration of pH is higher in a major area of eastern 

and north-eastern zone of the tehsil. However the entire 

tehsil has highly alkaline ground water with the minimum 

being 7.8. The distribution of pH shows moderate to low 

correlation with all other parameters. Strongest negative 

association occurs with     TH (r = -0.599), HCO3
- (r = -

0.53) and Cl- (r = -0.421). 

 

Distribution of Na+ and Cl- have strong positive 

association (r = 0.786). Distribution of Na+ is moderately 

associated with SO4
2- (r = 0.615), HCO3

- (r = 0.548) and 

TH (r = 0.595). The concentrations of these parameters are 

distinctly highest in the north central, north western and 

north eastern part of the tehsil.  Extreme southern part of 

the tehsil has moderate levels of Na+ , Cl- and TH while 

high concentration of  HCO3
- and SO4

2-. Entire tehsil, 

except a small pocket in the south-east has moderate to 

high levels of Ca2+ being highest in north-east and western 

half of the region, and moderate in the central and northern 

part. Distribution of Ca2+ has strongest positive 

correlation with TH (r = -0.71), EC (r = 0.646) and TDS 

(r = 0.662), and moderately associated with Cl- (r = 0.573) 

and SO4
2- (r = 0.51) 

 

The spatial distribution of F- shows a distinctly 

concentrated pattern. Extreme eastern and south-western 

parts of the tehsil have notably high levels, while western 

part is a low concentration region. The central region has 

moderate F levels. The distinctive concentration is 

substantiated by the correlation values which are on the 

lower end of the scale for all parameters except NO3 (r = 

0.533), which also shows highest concentration in the 

eastern half of the tehsil. . The southern pocket of high 

concentration corresponds with the predominantly forest 

and agricultural area. The eastern part of the tehsil is 

predominantly agricultural and settlement area. The NO3 

distribution in the tehsil may be accounted for by 

geological conditions and anthropogenic causes like use 

of agricultural fertilizers and coal combustion as well.   

Broadly it is observed that most of the red patches of the 

geo-chemical parameters (high predicted values) are 

falling in the areas occupied by gneisses particularly the 

extreme east and northern part. Minimum values of EC, 

TDS and TH (blue) are in an elongated zone falling in 

areas occupied by phyllites. However, the areas in the 

extreme west having moderate values (yellow) are also 

occupied by phyllites.  The high values of F- are in the 

extreme east and extreme south-west suggesting relation 

of fluoride concentration with Gneissic and Schistose 

rocks.  

 

The observed patterns of various parameters derived as 

interpolated surfaces relate logically to the probable 

natural, geological and anthropogenic factors to a 

significant extent. The R2 values between the measured 

and predicted values of various parameters range from 

approx. 20 percent for TH, Cl –  to approx. 80 percent for 

F and NO3. Approximately 50 percent variability is 

explained for distribution of SO4, TDS, Na and pH.
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Figure 5a. The interpolation surfaces generated by Kriging with optimal parameters models for EC, TDS, pH, 

TH, Na, Ca,, Cl and HCO3.  
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Figure 5b. The interpolation  surfaces generated by Kringing with optimal parameters models for F, SO4 and NO3

 

4. Conclusions 

 

It can be concluded that the most of the northern, north-

eastern, central and extreme southern regions of the 

Dungarpur tehsil are affected by higher concentrations of 

various chemical parameters such as EC, TDS, pH, TH, 

Na+, Ca+2, F-, Cl-, HCO3
-, SO4

-2 and NO3
-. Kriging 

estimation can be considered as a reliable method for 

generation of interpolated surfaces of ground water quality 

based on point sample data and selection of best suitable 

semi-variance model among Gaussian, Spherical and 

Exponential over the log normal transformed data of water 

quality parameters. The nugget effect can be employed as 

an efficient index to illustrate the degree of spatial 

correlation based on semi-variable function. The 

performance of the models varies for different parameters. 

In the present study the distribution of geochemical 

parameters like Flouride, Nitrate, Alkalinity, TDS, 

Sulphate and Sodium has been effectively modelled using 

the Krigging tool. However, the prediction capability for 

TH and Chlorine has been relatively low.  
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