
Journal of Geomatics  Vol. 16, No. 2, October 2022 

© Indian Society of Geomatics    

Study of CNN deep learning model for temporal remote sensing data processing to map rabi 

crops 

 
Mragank Snighal1,*, Ashish Payal2 and Anil Kumar3 

1,2 USIC&T, Guru Gobind Singh Indraprastha University, New Delhi, India  

3Indian Institute of Remote Sensing, Dehradun, India 

*Email: mraganksinghal@gmail.com 

 

(Received: Dec 5, 2021: In final form: 25 Sep 2022) 

 

Abstract: Convolution Neural Network (CNN) is a deep learning approach that has become an area of interest to the 

researchers for solving complex problems. With the evaluation of CNN, extraction of deep features for accurate 

classification of remotely sensed images has gained lot of momentum. This research work uses CNN deep learning model 

for mapping rabi crops (mustard and wheat) using temporal remote sensing data. The mappings of mustard and wheat 

crops have been conducted using multispectral temporal images obtained from Sentinel 2A/2B between the dates 1st Nov 

2019 and 24th Feb 2020 of Banasthali, Rajasthan region. The CNN model created in this research work uses several layers 

along with 5 activation functions (relu, sigmoid, tanh, elu and selu) for finding out which activation function gave the 

best result for the proposed study. Batch size has been examined from 1 to 50 in the multiple of 5 and epochs have been 

tested from 1 to 10 for a training data of 200 samples for each class. The optimal value with a batch size of 5 and epochs 

of 30 has been calculated as best suited in this study as the accuracy was getting constant. The implementation of CNN 

model for classification shows better results as compared to the traditional approach as the CNN algorithms are learning 

algorithms. This also helps in handling the heterogeneity within a class. A comparison has been conducted using Modified 

Possibilistic c-Means (MPCM) fuzzy algorithm for the classification of the same set of classes. F-Score, Kappa and 

Overall Accuracy have been calculated to show how the proposed approach has been outperformed and the level of 

classification accuracy achieved. 

 

Keywords: Convolution Neural Network (CNN), Deep feature extraction, multispectral image classification, Soft 

Classification 

 

1. Introduction  

 

Digital image classification is one of the prominent 

application domains to map and extort the data of remote 

areas through satellite imagery. Lillesand and Kiefer 

(2015) have mentioned digital image classification as a 

quantitative technique to classify image data into various 

categories. Supervised and unsupervised image 

classifications are two broad categories of classification 

procedure (Campbell, 1996). When training data is 

available, supervised classification is widely used and 

when training data is unavailable, unsupervised 

classification is applied on remote sensing imagery. 

Higher accuracy can be achieved with the intervention of 

computers to process a digital image (Richards and Jia, 

2013). 

 

Bezdek et al. (1984) presented Fuzzy c-Means (FCM) 

algorithm with a thought of fuzzy sets to solve mixed pixel 

problem. Later, to overcome the drawbacks of FCM, 

Krishnapuram et al. (1993) proposed an algorithm based 

on a possibilistic concept and improvement in the 

objective function, which was labeled as Possibilistic c-

means (PCM). Fuzzy based classifiers are generally 

effective in handling mixed pixels to produce precise and 

reasonable outcomes from image classification (Chawla, 

2010). 

 

Supervised noise clustering (NC) has been opted as the 

base classifier. Adding nine different kernel functions as 

the distance functions resulting in a kernel-based classifier, 

termed KNC (Sengupta et al. 2019). Li et al. (2003) revised 

the objective function of PCM, and an efficient clustering 

algorithm, named Modified Possibilistic c-Means 

(MPCM), was presented by him. This algorithm saves an 

amount of running time by eliminating the computation of 

membership parameters in every iteration. Since PCM 

causes a coincident cluster problem, MPCM was 

introduced to fit the clusters, closer to one another. As 

compared to PCM, MPCM is less sensitive to noise and 

avoids trivial solutions too (Li et al., 2003).  

 

PCM and MPCM algorithms are capable of mapping 

specific classes of interest from temporal datasets (Misra 

et al., 2012; Singh et al., 2019). The reflectance from these 

classes depends upon several factors such as soil type, 

terrain, moisture content, and atmospheric condition 

(Rawat et al., 2021). A single date image may have spectral 

overlap between two or more classes while mapping the 

second/third classification level. This spectral overlap can 

effectively be separated by the use of temporal images 

(Chandola et al., 2010). 

 

Traditional classifiers are not capable to map single class 

of interest from remote sensing image. ID-CNN model 

implemented in this research work has been designed to 

map only wheat or mustard from given temporal remote 

sensing data.  So, this specific single class mapping 

capabilities of ID-CNN model has been explored in this 

research work, which is not there with traditional image 

classifiers. Secondly, the accuracy and reliability of the 

information gathered by the imagery is dependent on the 

classification. Although there are some advanced 

classification methods such as Support Vector Machines, 

Random Forest, etc., which have been used widely 

traditionally, but still the researchers have been still 

working to improve the classification accuracy because the 

classified images provide important base information for 
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GIS applications and analysis on decision making process. 

The gap in the traditional approach was the loss of 

information and also lack of learning algorithms that were 

addressed with the help of learning algorithms like CNN 

(Mustafa et al., 2016). 

 

Many fields of science, remote sensing included, were able 

to exploit the success of natural image classification by 

Convolutional Neural Network (CNN) models using a 

technique commonly called transfer learning (Lima et al., 

2019). Hu et al. (2015) remarked that the performance of 

remote‐ sensing image classification has only slightly 

improved in recent years. The main reason remote‐
sensing image classification only marginally improved is 

due to the fact that the approaches relying on low‐ level 

features are incapable of generating sufficiently powerful 

feature representations for remote‐ sensing scenes (Lima 

et al., 2019). Hu et al. (2015) concluded that the more 

representative and higher‐ level features, which are 

abstractions of the lower‐ level features, are desirable and 

play a dominant role in the scene classification task. 

 

Convolutional Neural Networks (CNNs) mostly improve 

prediction performance using big data and plentiful 

computing resources and have pushed the boundaries of 

what was possible. Problems which were assumed to be 

unsolvable are now being solved with super-human 

accuracy (Mahony et al., 2019). Current progress in deep‐
learning models, specifically deep convolutional neural 

networks (CNN) architectures, have improved the state‐
of‐ the‐ art in visual object recognition and detection, 

speech recognition and many other fields of study (Cun et 

al. 2015). Many CNN models use 10 to hundreds of layers. 

Huang et al. (2016) proposed models with thousands of 

layers (Huang et al., 2016). Due to the vast number of 

operations performed in deep CNN models, it is often 

difficult to discuss the interpretability, or the degree to 

which a decision taken by a model can be interpreted. 

 

Remote Sensing images have features at many layers 

which can be extracted using deep feature extraction 

methods. Many classifiers are designed for classification 

but at a single layer, there some classifiers which also work 

on two layers such as decision tree or kernel SVMs 

(Bengio et al., 2013). Despite CNNs’ powerful feature 

extraction capabilities, Hu et al. (2015) and others found 

that in practice it is difficult to train CNNs with small 

datasets. However, Yosinski et al. (2014) and Yin et al. 

(2017) observed that the parameters learned by the layers 

in many CNN models trained on images exhibit a very 

common behavior. 

 

This research work experimented classification with a 

CNN model which has been applied on temporal remote 

sensing data to map rabi crops and compared using 

Modified Possibilistic c-Means (MPCM) algorithm. The 

proposed CNN approach has been compared with 

Euclidean and variance-covariance parameters in the 

MPCM classifier. Secondly, spectral overlaps between 

classes like mustard and wheat have been handled using 

the temporal indices database. This temporal indices 

database for each class has been generated during the 

class-based sensor independent (CBSI)-NDVI approach 

and compared with NDVI temporal database. 

Convolutional Neural Networks (CNNs) do not generate 

statistical parameters from training samples. In place of 

generating statistical training parameters, CNN considers 

all training samples as it is, so that each sample can give 

equal impact on training the model as well as classify 

unknown pixel in an image. Due to this, outputs from CNN 

models are very homogeneous. Due to this factor 1D-CNN 

model has been tested in this research work. 

 

2. Vegetation indices 
 

Many scientists have extracted and modelled various 

vegetation biophysical variables using remote sensing data 

since 1960. Various efforts have been taken towards 

developing vegetation indices, which are defined as 

dimensionless, radiometric measures that function as 

indicators of relative abundance and activity of green 

vegetation. Although there are more than 20 different 

vegetation indices in use, in this research work, NDVI has 

been considered. Cohen (1991) suggests that the first true 

vegetation index was the Simple Ratio (SR), which is the 

near – infrared (NIR) to red reflectance ratio described in 

Birth and Mc-Vey (1968) as mentioned in Eq. (2.1): 

Red

NIR
SR                   (2.1) 

Rouse et al. (1974) developed the generic Normalized 

Difference Vegetation Index (NDVI) as mentioned in Eq. 

(2.2):  

Red

Red






NIR

NIR
NDVI                  (2.2) 

Temporal indices datasets can provide spectral change 

over time for a crop (Upadhyay et al., 2012). Band ratio is 

used in remote sensing to eliminate the different 

topography and illumination effects and enhance a class 

(Sengar et al., 2001). The NDVI was widely used and 

applied to the original Landsat MSS digital remote sensing 

data. A novel Class-Based Sensor-Independent Indices 

(CBSI) generates a much-enhanced class of interest in 

indices data (Upadhyay et al., 2013). The advantage of 

using CSBI approach in indices generation is that, user 

does not have to provide bands in given indices formula. 

CBSI have minimum and maximum operators which 

selects bands such a way that class of interest get 

maximum enhancement. It has also been used to reduce the 

spectral dimensionality of temporal remote sensing dataset 

which has been used in this study as well. The CBSI-NDVI 

formula is mentioned in Eq. (2.3): 

minmax

minmax








 NDVICBSI

                    

(2.3) 

 

where ρmax and ρmin represent the band of maximum and 

minimum reflectance, respectively. 

 

3. Mathematical concept of classification algorithm 

 

MPCM has been introduced to resolve the limitations of 

FCM and PCM. MPCM has fast clustering ability, abilities 

to resist noise, and trivial solution (Li et al, 2003). Since 

PCM causes coincident clusters, thus MPCM is proposed 

to overcome this problem and fit the clusters, which are 
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close to one another. Li et al. (2003) introduced the main 

limitation of PCM that it takes more time in 

implementation, and a large number of parameters need to 

be determined. This section will present the mathematical 

concepts of the MPCM algorithm and its objective 

function formulation. Li et al. (2003) revised the objective 

function of PCM, presented an efficient clustering 

algorithm, and discussed how to choose parameters.  

 

Pseudo code of MPCM Algorithm 

1. Assign mean values of each class from training 

data. 

2. Assign the value of the degree of fuzziness ∞ > m 

> 1. 

3. Compute the regularization parameter ‘𝜂𝑖’ as 

mentioned in Eq. (3.6). 

4. Compute the membership matrix, as given in Eq. 

(3.1): 

 

   𝑢𝑖𝑗 = 𝑒
(

−𝑑𝑖𝑗
2

𝜂𝑖
)

, where d2
ij = ║xi - vj║               (3.1) 

5. Assign the final class to each pixel. 

 

To minimize the impact of noise and outlier’s parameter λi 

was introduced for each training sample, and the 

modification has been done in PCM's objective function. 

The objective function of MPCM is mentioned in Eq. 

(3.2): 
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λi is taken according to the expression mentioned in (3.3): 
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where α is a suitably chosen constant, and  
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 , where wij is a monotonous 

decreasing function. 

 

4. CNN model 

 

Convolutional neural network is a class of deep learning 

methods which has become dominant in various computer 

vision tasks and is attracting interest across a variety of 

domains, including image classification. CNN is designed 

to automatically and adaptively learn spatial hierarchies of 

features through backpropagation by using multiple 

building blocks, such as convolution layers, pooling 

layers, and fully connected layers (Yamashita et al., 2018). 

 

A CNN is composed of a stacking of several building 

blocks: convolution layers, pooling layers (e.g., max 

pooling), and fully connected (FC) layers. A model’s 

performance under particular kernels and weights is 

calculated with a loss function through forward 

propagation on a training dataset, and learnable 

parameters, i.e., kernels and weights, are updated 

according to the loss value through backpropagation with 

gradient descent optimization algorithm, ReLU, rectified 

linear unit. An overview of a convolutional neural network 

(CNN) architecture and the training process is shown in 

Figure 1. 

 

 
Figure 1. CNN Architecture 

 

The CNN architecture includes several building blocks, 

such as convolution layers, pooling layers, and fully 

connected layers. A typical architecture consists of 

repetitions of a stack of several convolution layers and a 

pooling layer, followed by one or more fully connected 

layers. In this research work, two 1D convolution layers 

are used which reduces the in-plane dimensionality of the 

feature maps in order to introduce a translation invariance 

to small shifts and distortions, and decrease the number of 

subsequent learnable parameters. The max pooling layer 

extracts patches from the input feature maps, outputs the 

maximum value in each patch, and discards all the other 

values. Once the features extracted by the convolution 

layers and down-sampled by the pooling layers are created, 

they are mapped by a subset of fully connected layers to 

the final outputs of the network, such as the probabilities 

for each class in classification tasks. The final fully 

connected layer has the same number of output nodes as 

the number of classes. Each fully connected layer is 

followed by a nonlinear function, ReLU (Rectified Linear 

Activation Unit). The CNN Model used in this research 

work is shown in Figure 2. 

 

 
Figure 2. CNN Model used 

 

MPCM algorithm has fast clustering abilities and also it 

can resist noise and trivial solutions. With each layer, the 

CNN’s complexity in understanding the image increases. 

This means that layers at the beginning are responsible for 

detecting low-level features such as edges and colors and 

the layers at the end are responsible for detecting high-

level features such as shapes that we can easily recognize. 

The main advantage of CNNs compared to a traditional 

neural network is that they automatically detect important 

features without any human supervision. 

5. Study area and dataset used 
 

This section elaborates the details about the study area and 

the dataset used in this research work. 
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5.1. Study area 

Surroundings of the Banasthali Vidyapith area, Rajasthan 

state, India, have been selected as the study area for this 

research to identify mustard and wheat fields while testing 

the proposed approach. Banasthali is located in the district 

Tonk and is surrounded by agricultural land where mustard 

covers around 2,99,000 hectares of area, whereas wheat is 

cultivated in approximately 66,000 hectares. Several other 

crops such as barley, gram, jowar, bajra, moong and urd 

can also be found in comparatively less area. The area is 

located in the north-eastern part in the state of Rajasthan. 

The study area lies between 26°23' and 26°24' north 

latitude, 75°51' and 75°54' east longitude. It is surrounded 

by Jaipur towards the north, Sawai Madhopur towards the 

east, Kota district on the southeast, Bundi towards the 

south, Bhilwara district on the southwest, and Ajmer 

towards the west.  

 

The reasons for selecting this study area were: 

 The area is surrounded by small villages where 

mustard, wheat, and grass fields can be found easily. 

 During November (2019) and December (2019) large 

fields of mustard can be seen here, which later 

becomes fallow land by the end of March (2020). 

 

The different classes of interest i.e., mustard and wheat 

ground truth samples were collected from the field visit 

which has been shown in Figure 3. The location map and 

different land cover classes identified in the study area are 

presented in Figure 4. 

 

 
Figure 3. Photographs taken during the field visit on 

11th Dec 2019 in the surroundings of Banasthali 

Vidyapith region 

 
Figure 4. Location of study, Banasthali Vidyapith area, 

Rajasthan State, India 

 

Table 1 shows the latitude and longitude locations of 

various field samples collected during the field visit done 

on 11th Dec 2019 in the Banasthali Vidyapith region's 

surroundings. Around the field, 200 samples were 

identified at different locations for these classes of interest. 

Ten fields of mustard and wheat classes and a total of 

twenty field samples have been shown in Table 1, from 

where training pixels were collected. Table 2 shows ten 

field samples that have been used for reference data. 

 

Table 1. Ground Truth Samples Collected during the 

field visit 

Classes-> Mustard Wheat 

Samples Latitude Longitude Latitude Longitude 

Sample 1 26°23’49’’ 75°53’08’’ 26°23’45’’ 75°53’36’’ 

Sample 2 26°23’47’’ 75°53’21’’ 26°23’45’’ 75°53’36’’ 

Sample 3 26°23’43’’ 75°53’34’’ 26°23’47’’ 75°53’38’’ 

Sample 4 26°23’44’’ 75°53’35’’ 26°23’47’’ 75°53’38’’ 

Sample 5 26°23’44’’ 75°53’40’’ 26°25’51’’ 75°52’30’’ 

Sample 6 26°23’41’’ 75°53’45’’ 26°25’46’’ 75°52’31’’ 

Sample 7 26°23’43’’ 75°53’40’’ 26°25’45’’ 75°52’32’’ 

Sample 8 26°23’40’’ 75°53’46’’ 26°25’21’’ 75°52’37’’ 

Sample 9 26°23’59’’ 75°53’13’’ 26°25’18’’ 75°52’38’’ 

Sample 10 26°23’44’’ 75°53’31’’ 26°25’15’’ 75°52’38’’ 

 

Table 2. Reference Data Collected during the field visit 

Classes-> Mustard Wheat 

Samples Latitude Longitude Latitude Longitude 

Sample 1 26°25’06’’ 75°52’08’’ 26°25’21’’ 75°52’23’’ 

Sample 2 26°25’03’’ 75°51’45’’ 26°25’24’’ 75°52’36’’ 

Sample 3 26°25’04’’ 75°51’43’’ 26°25’02’’ 75°52’38’’ 

Sample 4 26°25’02’’ 75°52’38’’ 26°25’01’’ 75°52’48’’ 

Sample 5 26°24’58’’ 75°52’25’’ 26°24’55’’ 75°52’51’’ 

 

 
 

 

 

 Mustard   Wheat 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 Mustard  Wheat 

Testing sites 

Training sites 
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5.2. Dataset used 

In this research work, the multispectral temporal images 

from twin satellites i.e., Sentinel-2A and Sentinel-2B have 

been used to discriminate mustard and wheat fields. Seven 

temporal images have been acquired from 1st Nov 2019 to 

24th Feb 2020 of the same area. These images were then 

used to study the CNN deep learning model’s 

performance. The multispectral temporal Sentinel 2A/2B 

dataset and its sensor specification have been given in 

Table 3. 

 

Table 3. Sentinel 2A/2B dataset and sensor 

specification. 

Specifications Sentinel – 2A/B 

Spatial Resolution 10 – 60 meters 

Spectral Resolution 13 bands 

Scene Size 290 km x 290 km 

Image Acquired on 

1-Nov-19, 16-Nov-19, 11-Dec-

19, 26-Dec-19, 10-Jan-20, 30-

Jan-20, 24-Feb-20 

 

6. Methodology 

 

Initially, multispectral images have been pre-processed to 

generate temporal indices database using Sentinel–2A/B 

satellite images. CBSI-NDVI approach has been applied to 

generate a temporal indices database parallel to it. The 

objective of generating temporal indices database was to 

reduce the spectral dimension of temporal images and 

maintain temporal dimension to incorporate phonological 

profile of crop, and represented in the form of vector 

elements to be used in MPCM classifier. Spectral 

dimension was reduced, and only the temporal dimension 

used in a fuzzy-based classifier to have input data 

representing indices as vector elements. Temporal indices 

database has been used in separability analysis, using 

Euclidean separability, to find out the best temporal date 

combination for separating mustard and wheat fields, as 

shown in table (4) and (5). Once suitable dates for each 

class were identified, using these dates, temporal indices 

database was generated.  

 

The temporal indices database was used as an input to the 

CNN Model to generate the classified outputs for mustard 

and wheat fields. The temporal indices database was also 

used in the supervised Modified Possibilistic c-Means 

(MPCM) algorithm for accuracy assessment. A detailed 

description of the methodology has been given in Figure 5. 

 

 

 

 
Figure 5. Methodology Adopted 

 

Following steps were applied to identify mustard and 

wheat fields’ classes using temporal dataset of 1st Nov 

2019, 16th Nov 2019, 11th Dec 2019, 26th Dec 2019, 10th 

Jan 2020, 30th Jan 2020, and 24th Feb 2020 images: 

1) All temporal images were used to generate CBSI-

NDVI outputs using seed training data for mustard 

and wheat fields separately, with the help of the 

CBSI-NDVI formula mentioned in Eq. (2.3). 

2) Outputs from step (1) were used in separability 

analysis to identify temporal images suitable to be 

used for any specific class. 

3) Temporal images identified in step (2) were then used 

to generate CBSI-NDVI outputs using seed training 

data for mustard, wheat, and grass fields separately in 

a similar way as done in step (1). 

4) The outputs generated in step (3) were used to create 

an optimized temporal indices database. 

5) Training data was created from the optimized 

temporal indices database generated from step (4) 

using the ground truth samples locations. 

6) The optimized temporal indices database (generated 

from step 4) was then classified using training data 

created in step (5), by applying CNN Model and 

MPCM classifier. 

7) The classified outputs from step (6) were then 

compared, and an accuracy assessment was 

conducted. 

8) The same steps were applied to generate classified 

outputs for other classes of interest. 

 

As discussed in the methodology, Table 4 and Table 5 

gives information about bands and optimized temporal 

dates used for mustard, wheat, and grass classes as 

identified from step (2). 
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Table 4. Selected Bands for Mustard using CBSI-NDVI 

approach 

Dates 

Mustard 

CBSI-NDVI 

value 
ρmax ρmin 

1-Nov-19 0.57 SWIR Blue 

16-Nov-19 0.4 VNIR Blue 

11-Dec-19 0.62 VNIR SWIR 

30-Jan-20 0.86 VNIR Blue 

24-Feb-20 0.52 VNIR SWIR 

 

Table 5. Selected Bands for Wheat using CBSI-NDVI 

approach 

Dates 

Wheat 

CBSI-NDVI 

value 
ρmax ρmin 

11-Dec-19 0.52 VNIR Blue 

26-Dec-19 0.81 VNIR Blue 

10-Jan-20 0.89 VNIR Red 

30-Jan-20 0.91 VNIR Blue 

24-Feb-20 0.72 VNIR SWIR 

 

The graph in Figure 6 represents the CBSI-NDVI values 

of mustard for the suitable temporal dates using CBSI-

NDVI as shown in Table 4. Similarly, the graph in Figure 

7 represents the CBSI-NDVI values of wheat for the 

suitable temporal dates using CBSI-NDVI as shown in 

Table 5. Since the suitable dates of mustard are different 

from wheat, therefore, CBSI-NDVI values have been 

shown in two graphs. 

 

 
Figure 6. Graphical representations of CBSI-NDVI 

values for mustard 

 

 
Figure 7. Graphical representations of CBSI-NDVI 

values for wheat 

 

7. Results and discussion 

 

To identify the mustard and wheat fields in the Banasthali 

area of Rajasthan state, temporal remote sensing data for 

seven different dates have been available. The seed 

training samples of temporal datasets were collected, 

which were applied on 1st Nov 2019, 16th Nov 2019, 11th 

Dec 2019, 26th Dec 2019, 10th Jan 2020, 30th Jan 2020 and 

24th Feb 2020 temporal images. Separability analysis has 

been conducted for mustard, wheat, and grass fields to 

identify suitable optimum temporal images for 

classification. 

 

For model generalization training data was used to train 

the model, validation ground samples were used to validate 

the 1D-CNN model. Testing samples as unknown pixels 

were used to classify the temporal indices data. Classified 

output was assessed through collecting testing samples 

from classified outputs while comparing it with training 

sample outputs, to find out generalization performance of 

-1D-CNN model. 

 

Figure 8 shows the mustard fields’ output by using MPCM 

classifier and CNN Model using the selected temporal 

images. Figure 9 shows the wheat fields’ output by using 

MPCM classifier and CNN Model using the selected 

temporal images.

 
Figure 8. Mustard class output using MPCM and CNN model 
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Figure 9. Wheat class output using MPCM and CNN model 

 

Figure 10 shows the optimized CNN model for 

performance. Batch size has been examined from 1 to 50 

in the multiple of 5 and epochs have been tested from 1 to 

10 for a training data of 200 samples for each class. The 

optimal value with a batch size of 5 and epochs of 30 has 

been calculated as best suited in this study as the accuracy 

was getting constant. 

 

 
Figure 10. Optimized CNN performance model 

 

Table 6 shows the mean-membership difference (MMD) 

between favorable and non-favorable classes using 

different methodologies for quantitative comparison 

between traditional and proposed approaches. MMD is an 

independent approach for the stability of the concerned 

class by calculating the mean difference of membership 

value of the concerned class and other classes of pure pixel 

(Singh et al., 2021). 

 

Table 6. Mean-Membership Difference (MMD) 

between favorable and non-favorable classes 

MMD using MPCM Classifier 

Favourable Classes Non-Favourable Classes 

Mustard-

Mustard 

0.03 Mustard-

Wheat 

0.27 

Wheat-Wheat 0.02 Wheat-

Mustard 

0.22 

MMD using CNN Model 

Favourable Classes Non-Favourable Classes 

Mustard-

Mustard 

0.01 Mustard-

Wheat 

0.42 

Wheat-Wheat 0.01 Wheat-

Mustard 

0.74 

 

Using the quantitative comparison from table 6, with the 

help of mean-membership difference, it can be concluded 

that the CNN model was capable of yielding better results 

as compared with MPCM classifier. Table 7 shows the 

accuracy assessment using F-Score, Kappa, and Overall 

Accuracy using different methodologies for qualitative 

comparison between traditional and proposed approaches. 

 

Table 7. Accuracy Assessment through F-Score and 

Overall accuracy 
Using MPCM Classification 

Class Precision Recall F-Score Kappa 
Overall 

Accuracy 

Mustard 0.92 0.90 0.91 0.80 90.0 
Wheat 0.91 0.84 0.88 0.74 87.0 

Using CNN Model 

Mustard 0.93 0.96 0.94 0.88 94.0 
Wheat 0.92 0.92 0.92 0.84 92.0 

 

Overall accuracy which is mentioned in Table 7 also 

supports the same conclusion of the proposed approach 

compared to the traditional MPCM classification. 

 

8. Conclusions 

 

This study has integrated CNN deep learning model for 

temporal remote sensing data processing. The proposed 

approach uses CNN model for the processing of mustard 

and wheat crops using temporal datasets. Identification of 

these classes has been carried out using temporal datasets 

obtained from Sentinel 2A/2B between the dates 1st Nov 

2019 and 24th Feb 2020. 

 

The classification results of optimized temporal indices 

database with MPCM and CNN model were studied. The 

CNN model outperformed the traditional MPCM 

approach. From this research it can be concluded that CNN 

model gave the best classification results for the mapping 

of mustard and wheat fields. 
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