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Abstract: Different types of radii of curvature were assessed for the geoid based on the GECO geopotential model, up to 

degree and order 2190. The route values of gravity and the three horizontal gravity gradients were computed based on 

such geopotential model and the angular velocity of the Earth. The investigation was performed on coarse global grids 

and finer grids covering the Egyptian territory. Respective latitudinal and longitudinal profiles for the geoidal radii were 

extracted. Comparisons were held with the radii of curvature on the WGS-84 ellipsoid, and with the geoidal radii derived 

from other models of lower resolutions. Unlike the ellipsoid, the values of the geoidal radii exhibited a rather irregular 

behaviour that is far from any geographical symmetry. The principal radii of the geoid do not generally occur along the 

meridian and prime-vertical directions. Such irregularities were found to be more exaggerated with higher degrees. At all 

investigated resolution levels, the signs of the principal radii assured the convexity of the geoid surface. This enabled to 

define, compute and compare the Gaussian mean radii for the geoid. The local residual geoidal radii showed a decaying 

spectral tendency. Also, the results implied that the utilized algorithm proved to be convergent.  
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1. Introduction   

 

According to Gauss, the geoid represents the original 

mathematical figure of the Earth. In many geodetic 

applications, the radii of curvature of the geoid have been 

traditionally assigned a constant value representing the 

“mean radius of the Earth” (e.g. Bhattacharji 1969). Such 

spherical approximations have been followed either in a 

global or regional scale. For example, the determination of 

geoidal heights as well as the associated topographic 

reductions necessitate the accurate radius of curvature of 

the geoid (de Graaff-Hunter 1951; Hirvonen 1954; Müller 

et al. 1963; Livieratos and Tziavos 1991). This radius 

significantly differs by about 10 % from that of the 

ellipsoid (Hirvonen 1954). Also, the geoid is the natural 

reference system for heights. So, the everywhere convexity 

of the geoidal surface is an essential property that 

guarantees its validity as a vertical datum (Vaníček and 

Santos 2019).  

 

The differential geometry concept was the key for 

investigating the curvature characteristics of the 

equipotential surfaces. Over several decades, many works 

concerning the curvature of level surfaces have been 

conducted (Burša 1973a, b; Cevallos et al. 2012; Sansὸ and 

Sacerdote 2012; Cevallos et al. 2013 and Li 2015).  

 

Almost all of the prescribed investigations have addressed 

the level surface radii of curvature as a reciprocal measure. 

Also, some of them have numerically determined the 

curvatures of the level surfaces. Burša (1973c) has 

computed the geoidal radii of curvature based on smooth 

satellite data, up to degree and order 21. However, no study 

has evaluated updated high degree radii of curvatures of 

the level surfaces, including the geoid. Furthermore, the 

convexity of such surfaces has never been computationally 

judged (Meyer et al. 2004; Vaníček and Santos 2019).  

 

 

The objectives of the current study are to: 

 investigate the geometry of the geoidal surface in terms 

of its different radii,  

 test the convexity of the geoid, and 

 investigate the smoothing behaviour of the residual 

geoidal radii. 

 

The first two tasks are accomplished in both a global and 

local sense, whereas the third one is performed on a local 

scheme. The local investigation encounters the Egyptian 

territory. In all situations, parallel comparisons are held 

with the radii of the WGS-84 reference ellipsoid. Besides 

the ultra-high degree GECO (Gilardoni et al. 2016), other 

geopotential models with different resolutions are used 

model as a data tool,  

 

Section (2) represents a theoretical overview of the 

different radii of curvature and shape for level surfaces. In 

Section (3), the  methodology and data, which are used for 

the current work, are outlined. The results and  discussion 

are presented in Section (4). Finally, in Section (5), the 

appropriate concluding remarks and recommendations are 

drawn. 

 

2. Level surface radii of curvature: theoretical concept 

 

Figure 1 depicts the alignment of the right–handed local 

astronomic system at a given point P  on the level surface. 

In this system, the x–axis points towards the north, the y–

axis is taken along the east direction and the z–axis is 

reckoned towards the zenith. 
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Figure 1. The local astronomic system 

 

The magnitude of gravity at P  within this system is given 

by (Smith 1998; Barthelmes 2013) 

 

2 2 2 .x y zg W W W                                                  (1)  

 

The corresponding Eötvös tensor is composed of the 

spatial second derivatives of the potential W , as follows 

(Torge 2001) 
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 The curvature of any planar normal section, with azimuth 

 , of the level surface through point P  is defined by 

(Torge 2001) 
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The minus sign is a convention, such that a resulting 

positive curvature implies an upward convexity of the 

normal section of concern (Sharipov 2004; Tu 2017).  

 

Based on Equation (3), the radii of curvature of the level 

surface in the north and east directions are respectively 

given by (Torge 2001)  
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The principal curvatures of a level surface, 
min

  and 

max , occur at two mutually perpendicular directions. 

Namely, considering the extrema of Equation (3), such 

principal azimuths are expressed as follows (Torge 2001) 
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So, based on Equations (5) and (3), the respective maximal 

and minimal radii of curvature are given by (Torge 2001; 

Li 2015)  
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Such principal radii are of a pure geometric nature, since 

they are invariant with respective to any change of the 

adopted coordinate system (Tu 2017). So, another 

invariant quantity is the average radius of curvature of the 

level surface (Sharipov 2004), 
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where avg  is the average curvature.  

 

Another important invariant feature is the Gaussian (or 

total) curvature, which is given by (Raussen 2008; Li 

2015) 
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Specifically, a surface that is elliptic at a given point could 

be either convex or concave, depending on the common 

(positive or negative) sign of the principal curvatures ( 

Raussen 2008). In such case, it is possible to define the 

Gaussian mean radius of curvature as follows  
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So, if existing, meanR  would be rather efficient in judging 

the geometry of level surfaces.  

 

3. Methodology and data 

 

The gravity potential of the Earth, W , is composed of the 

harmonic gravitational potential and the non-harmonic 

rotational potential,  
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where 

L  maximal harmonic degree of the geopotential model, 
Mk  product of the universal gravitational constant by the 

Earth's mass, 

a  equatorial radius, 

r  geocentric radius, 

  geocentric co–latitude, 

  geodetic longitude, 

nmC  fully normalized spherical harmonic C -coefficients 

of degree n  and order m , 

nmS  fully normalized spherical harmonic S -coefficients 

of degree n  and order m , 

(cos )nmP   fully normalized associated Legendre 

function of degree n  and order m . 

   mean angular velocity of the Earth  (7.292115x10–5 

radian/second). 

 

So, based on Equation (9), the local Cartesian components 

of gravity can be evaluated as follows (Reed 1973; 

Tscherning 1976; Tscherning and Poder 1982; Rummel 

1997; Barthelmes 2013) 
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Also, it can be proved that (Tscherning 1976; Tscherning 

and Poder 1982; Rummel 1997; Deakin 1998; Zhu 2007; 

Barthelmes 2013)  
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A subtle point is that the geoid is one of the level surfaces 

that extend partially inside the Earth’s masses. So, it would 

be expected to exhibit discontinuities in the second 

derivatives where density jumps occur (Torge 2001). 

However, according to Krarup-Runge’s theorem, the 

analytical continuation of the external potential down to 

the geoid is possible with sufficient practical accuracy 

(Bjerhammar 1973; Tscherning 1981). Particularly, for 

points lying on the geoid, the spherical harmonic 

expansion achieves the harmonic downward continuation 

of the potential and its derivatives in a natural way simply 

by amplifying the signal, by using terraingeoid
r r  

(Barthelmes 2013).

             

  

 

Equations (10), (1) and (11) are used in Section (4) to 

determine the different radii of curvature for the geoid. 

This is performed, based on the ultra-high degree GECO 

model (Gilardoni et al. 2016), the low-degree satellite only 

model GOCO03S (d/o 250) (Mayer-Gürr et al. 2012) , the 

ultra-high degree models EIGEN-6C2 (d/o 1949) and 

SGG-UGM-1 (d/o 2159) (Förste et al. 2012; Liang 2018). 

For this purpose, the open-source software geopot07 is 

used. It is capable of synthesizing up to the second order 

derivatives of the Earth’s potential, within the local 

Cartesian system at any point (Tscherning 1976; 

Tscherning and Poder 1982; Tscherning et al. 1983; 

Forsberg and Tscherning 2008; Smith 2010).  

 

 

4. Results and discussion 

 

4.1  Global investigation of the geoidal geometry 

Table 1 lists the statistics of the different types of the 

geoidal radii of curvature, which were computed over a     

5º × 5º global grid, based on GOCO03S model. Table 2 

shows the same features, but evaluated from GECO 

harmonic model. Unlike an ellipsoid of revolution, both 

tables indicate that the geoidal principal radii do not 

generally correspond to the meridian and prime-vertical 

directions. Also, the two tables show that the principal radii 

possess positive signs, which implies a convexity of the 
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geoid surface at all computational points. Therefore, as 

shown in the two tables, it was possible to define and 

compute the Gaussian mean radius of curvature, meanR . It 

is obvious that the differences among such mean radii and 

the average ones are generally small.  

 

Table 1. Statistics of the 5º × 5º global geoidal radii of 

curvature based on GOCO03S (d/o 250) (km) 

 Min.  Max. Mean 
Std. 

Dev. 

mR  6260.117 6480.521 6368.301 25.886 

nR  6299.965 6474.130 6388.995 13.758 

min
R  6248.500 6431.304 6364.758 23.466 

maxR  6324.661 6502.624 6392.553 15.244 

avgR  6302.701 6448.891 6378.615 18.005 

meanR  6302.739 6449.112 6378.635 17.995 

mean avgR R  0 0.307 0.020 0.026 

 

Table 2. Statistics of the 5º × 5º global geoidal radii of 

curvature based on GECO (d/o 2190) (km) 

 Min.  Max. Mean 
Std. 

Dev. 

mR  5655.826 7462.316 6370.516 66.374 

nR  5598.276 7058.731 6389.702 57.622 

min
R  5573.306 6873.800 6349.438 61.147 

maxR  5933.936 8234.726 6411.195 71.759 

avgR  5747.970 7254.914 6379.890 50.293 

meanR  5750.795 7266.092 6380.103 50.718 

mean avgR R  0 85.745 0.213 1.819 

 

Obviously, the variation of all radii types in Table 2, as 

expressed in terms of the standard deviation, are more 

exaggerated than those in Table 1. This in turn reflects the 

gain in radii details as computed from the ultra-high degree 

GECO model. 

 

 
(a): GOCO03S (d/o 250) 

 
 (b): GECO (d/o 2190) 

Figure 2. Equatorial profiles for the geoidal radii of 

curvature 
 

In order to have a deeper global insight, two equatorial 

profiles were extracted from the global two 5ºx5º sets of 

meridian, prime-vertical, principal and mean radii of 

curvatures. Figure (2a) and (2b) depict the details of the 

two profiles pertaining to GOCO03S and GECO, 

respectively. Regarding all types of radii of curvature, the 

rotational symmetry (or the latitude-only dependency) no 

longer exists. Such rotational anti-symmetry is more 

pronounced in case of GECO, which exhibits a more 

oscillatory behaviour.  
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Tables 3 and 4 show statistical comparisons among the two 

equatorial profiles depicted in Figure (2a) and (2b), 

respectively.  

 

Table 3. Statistics of the geoidal radii along the Equator 

based on GOCO03S (d/o 250) (km) 

 Min.  Max. Mean 
Std. 

Dev. 

mR  6304.242 6374.468 6336.213 11.054 

nR  6352.366 6398.434 6378.160 7.242 

min
R  6300.393 6363.93 6334.713 10.754 

maxR  6364.819 6401.689 6379.679 6.416 

minmR R  0.001 36.091 1.501 5.401 

max nR R  0 36.399 1.519 5.458 

meanR  6336.269 6372.687 6357.154 7.037 

 

Table 4. Statistics of the geoidal radii along the Equator 

based on GECO (d/o 2190) (km) 
 Min.  Max. Mean Std. Dev. 

mR  6001.227 6575.318 6340.881 66.462 

nR  6172.599 6454.935 6370.694 41.756 

min
R  5996.772 6407.722 6318.095 56.509 

maxR  6307.863 6580.215 6393.674 41.959 

minmR R  0 254.190 22.786 51.406 

max nR R  0 258.260 22.980 51.756 

meanR  6196.396 6493.396 6355.693 38.572 

 

Likewise, two profiles were extracted from the two global 

grids of radii of curvatures, but along Greenwich meridian. 

Figure (3a) and (3b) illustrate these profiles. Both profiles 

are anti-symmetric with respect to the equatorial plane, a 

fact which is more exaggerated in Figure (3b) that 

corresponds to GECO model. Tables 5 and 6 list the 

corresponding statistics.  

 

Figure (4a) and (4b) depict the variation of the GECO 

geoidal radii of curvature with longitude at the poles. The 

two poles possess different mean and principal radii. Also, 

it was noticed that the patterns in Figure (4) mirror those 

pertaining to the western hemisphere, which acted as a 

validation tool for the computational algorithm. 

 

Table 5. Statistics of the geoidal radii along Greenwich 

meridian based on GOCO03S (d/o 250) (km) 
 Min.  Max. Mean Std. Dev. 

mR  6335.483 6403.669 6368.977 22.814 

nR  6371.961 6411.633 6390.273 10.192 

min
R  6335.410 6400.789 6367.279 21.004 

maxR  6372.112 6416.979 6391.976 11.680 

minmR R  0 9.324 1.698 3.001 

max nR R  0 9.330 1.703 3.006 

meanR  6356.213 6406.098 6379.613 15.951 

 

 

 

 
(a): GOCO03S (d/o 250) 

 
(b): GECO (d/o 2190) 

Figure 3. Greenwich profiles for the geoidal radii  

 

Table 6. Statistics of the geoidal radii along Greenwich 

meridian based on GECO (d/o 2190) (km) 

 Min.  Max. Mean Std. Dev. 

mR  6284.696 6454.208 6368.891 38.628 

nR  6315.068 6472.430 6391.256 31.846 

min
R  6253.770 6429.035 6355.037 35.991 

maxR  6361.470 6481.104 6405.257 33.591 

minmR R  0.043 80.486 13.854 20.823 

max nR R  0.044 80.994 14.000 21.021 

meanR  6311.386 6449.996 6380.076 30.393 
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(a): North pole 

 

 
(b): South pole 

Figure 4. The geoidal radii of curvatures at the poles 

based on GECO (d/o 2190) 

 

For the sake of comparison, 5º × 5º global grids for the 

meridian, prime-vertical and mean radii of curvature were 

evaluated for the WGS-84 reference ellipsoid (Jekeli, 

2006). Tables 7 and 8 list the statistical comparison 

between the GECO and GOCO03S geoidal radii and those 

of WGS-84. While the small mean values in the two tables 

imply a good overall behaviour of the WGS-84 geocentric 

ellipsoid in approximating the geoid, the associated large 

ranges and standard deviations could reflect the regional 

irregularities of the geoidal radii.  

 

Figure 5a shows a global contour map for the differences 

among the geoidal mean radii from GOCO03S model and 

those of WGS-84. This map shows significant regional 

differences, which are neither rotationally nor equatorially 

symmetric. Such result is more pronounced in Figure (5b), 

which illustrates another comparative contour map, but 

regarding GECO model.  

 

 

 

Table 7. Statistical comparison among the 5ºx5º global 

GOCO03S geoidal radii and those of WGS-84 (km) 

 Min.  Max. Mean 
Std. 

Dev. 

-84


WGS
m mR R  –104.442 102.153 –0.017 12.861 

-84


WGS
n nR R  –81.988 89.374 –0.147 11.466 

-84



WGS

mean

mean

R

R
 –70.796 60.283 –0.082 9.869 

 

Table 8. Statistical comparison among the 5ºx5º global 

GECO geoidal radii and those of WGS-84 (km) 

 Min.  Max. Mean 
Std. 

Dev. 

-84


WGS
m mR R  –711.556 1110.939 2.199 62.679 

-84


WGS
n nR R  –786.896 675.250 0.559 57.087 

-84



WGS

mean

mean

R

R
 –619.988 898.683 1.386 48.496 

 

 
(a): (GOCO03S minus WGS-84) 

 
(b): (GECO minus WGS-84) 

Figure 5. Global contour maps for the differences 

among the geoidal and WGS-84 mean radii of 

curvature (Interval: 50 km) 

 

4.2 Local application to the Egyptian territory 

Firstly, local 10ʹ × 10ʹ grids of the geoidal radii of 

curvature were computed over the Egyptian territory, 

based on GECO model. These grids cover the window 

22    32  ;  25   ( ) 36         N N E E  .  

 

Table 9 shows the corresponding statistics. Again, the 

principal radii are all positive. This result ascertains the 

convexity of the geoidal surface at such local scale with a 

much finer resolution. The large departures of the principal 

radii from those in the north and east directions are obvious 
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in Table 9. Each pair of these radii types generally occur 

at different azimuths. This is easy to infer from Table (10), 

which lists the statistics of the azimuths of the geoidal 

maximal radii based on GECO. Obviously, these azimuths 

exhibit a broad range of values around the east direction. 

 

Table 9. Statistics of the 10ʹx10ʹ grids of the geoidal 

radii for Egypt based on GECO (d/o 2190) (km) 

 Min.  Max. Mean 
Std. 

Dev. 

mR  6027.371 6614.634 6347.017 39.104 

nR  5863.951 6991.018 6383.203 57.087 

min
R  5835.614 6473.656 6332.606 45.206 

maxR  6136.712 7007.131 6397.845 52.579 

avgR  5982.377 6656.605 6364.919 38.596 

meanR  5984.270 6664.949 6365.073 38.706 

mean avgR R  0 11.924 0.153 0.503 

 

Table 10. Statistics of the 10ʹx10ʹ values of the azimuths 

of the geoidal maximal radii for Egypt based on GECO 

(d/o 2190) (arc-degree) 
 Min.  Max. Mean Std. Dev. 

max  0 179.8 90.1 30.9 

 

Figure (6a) and (6b) show the local profiles of the geoidal 

radii along the 27ºN latitude and the 30ºE meridian, 

respectively. These two figures agree with the general 

observations obtained from the global profiles in Figure (2) 

and (3), respectively.  

 

Furthermore, it was decided to perform a degree-wise 

investigation of the residual geoidal radii of curvature. For 

this purpose, other 10ʹx10ʹ local grids were established 

over Egypt, based on WGS-84 ellipsoid; and the 

GOCO03S (d/o 250), EIGEN-6C2 (d/o 1949) and SGG-

UGM-1 (d/o 2159) geopotential models. In order to 

perform the investigation at appropriate spectral-degree 

intervals, EIGEN-6C2 model was utilized at two stages: 

firstly up to d/o 1000 and then up to d/o 1800.  

 

 
(a): Profiles along the 27ºN latitude 

 

 
(b): Profiles along the 30ºE meridian  

Figure 6. Local profiles for the geoidal radii of 

curvature from GECO 

 

Table 11–15 list statistical comparisons for the 10ʹx10ʹ 

residual grids of the different geoidal radii types. Such 

residual values are the result of subtracting the different 

radii types pertaining to WGS-84, GOCO03S, EIGEN-6C2 

(up to d/o 1000), EIGEN-6C2 (up to d/o 1800) and SGG-

UGM-1; from those corresponding to GECO model. On 

one hand, the five tables show that the removal of the 

contributions of WGS-84 ellipsoid produced remarkably 

small mean, minimal and maximal residuals, while the 

corresponding standard deviations are nearly the same as 

those of GECO model. Again, this reflects the large local 

irregularity of the geoidal radii with respect to those of a 

reference ellipsoid. On the other hand, the removal of the 

radii derived from the remaining three harmonic models 

lead to an elegantly progressive smoothness of the 

residuals. Namely, such smoothness increases dramatically 

with the removal of higher harmonic degrees.  

 

Table 11. Statistics of the 10ʹx10ʹ grids of the residual 

mR  values (km) 

Residual mR  Min.  Max. Mean 
Std. 

Dev. 

N/ A (GECO)  6027.371 6614.634 6347.017 39.104 

GECO
WGS-84


 

–323.367 264.055 –1.656 39.161 

GECO
GOCO03S

  –313.898 273.407 –0.341 37.990 

GECO
d/o 1000

  –230.617 202.915 –0.338 28.395 

GECO
d/o 1800

  –138.883 95.816 –0.379 17.136 

GECO
d/o 2159

  –24.805 22.797 0.472 5.826 
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Table 12. Statistics of the 10ʹ × 10ʹ grids of the residual 

nR  values (km) 

Residual nR  Min.  Max. Mean 
Std. 

Dev. 

N/ A (GECO)  5863.951 6991.018 6383.203 57.087 

GECO
WGS-84


 

–519.105 607.645 0.628 57.066 

GECO
GOCO03S

  –523.772 590.560 0.603 55.936 

GECO
d/o 1000

  –322.971 441.996 0.201 33.707 

GECO
d/o 1800

  –123.692 138.350 0.141 18.500 

GECO
d/o 2159

  –35.872 31.748 0.007 6.387 

 

Table 13. Statistics of the 10ʹ × 10ʹ grids of the residual 

min
R  values (km) 

Residual 

min
R  Min.  Max. Mean 

Std. 

Dev. 

N/ A (GECO)  5835.614 6473.656 6332.606 45.206 

GECO
WGS-84


 

–514.494 120.477 –16.067 45.521 

GECO
GOCO03S

  –501.491 128.597 –13.786 44.645 

GECO
d/o 1000

  –300.581 166.759 –4.601 30.241 

GECO
d/o 1800

  –128.121 134.858 –1.404 17.231 

GECO
d/o 2159

  –29.964 29.157 0.529 6.085 

 

Table 14. Statistics of the 10ʹx10ʹ grids of the residual 

maxR  values (km) 

Residual 

maxR  
Min.  Max. Mean 

Std. 

Dev. 

N/ A (GECO)  6136.712 7007.131 6397.845 52.579 

GECO
WGS-84


 

–246.344 623.864 15.270 52.477 

GECO
GOCO03S

  –252.042 601.229 14.270 51.445 

GECO
d/o 1000

  –272.273 417.436 4.578 32.522 

GECO
d/o 1800

  –133.447 135.748 1.201 18.135 

GECO
d/o 2159

  –32.387 33.129 –0.052 6.276 

 

 

 

 

Table 15. Statistics of the 10ʹ × 10ʹ grids of the residual 

meanR  values (km) 

Residual 

meanR  
Min.  Max. Mean 

Std. 

Dev. 

N/ A (GECO)  5984.270 6664.949 6365.073 38.706 

GECO
WGS-84


 

–382.29 297.968 –0.529 38.694 

GECO
GOCO03S

  –378.607 288.741 0.118 37.793 

GECO
d/o 1000

  –219.898 230.075 –0.067 25.240 

GECO
d/o 1800

  –112.969 95.071 –0.119 14.430 

GECO
d/o 2159

  –22.250 24.219 0.240 5.023 

 

It should be noted that none of the geoidal radii is 

harmonic, since not only the harmonic gravitational part, 

but also the rotational potential contributes to their values. 

Although this rotational contribution is not a direct additive 

counterpart of the geoidal radii, it could have been 

someway minimized if not cancelled at all from the 

residuals in Table 11–15. This speculation could hold true, 

keeping in mind the larger standard deviations of the 

residuals relevant to WGS-84 in those five tables and in 

Table 8. Such large standard deviations could be due to the 

pure geometrical nature of the ellipsoidal radii. 

 

It is worthy to view the decay of the geoidal radii residuals 

in Table 11–15 from another perspective. Namely, this 

attenuation could assure the convergence of the algorithm 

followed in the current work, in which the geoidal radii are 

derived based on harmonic models.  

 

Finally, two local profiles for the geoidal mean radii were 

extracted along the 27ºN parallel of latitude and the 30ºE 

meridian. These two profiles are plotted in Figure (7a) and 

(7b), respectively. Obviously, the mean radii profiles 

corresponding to GOCO0S possess low resolution smooth 

trends. Alternatively, those pertaining to the higher 

resolutions from d/o 1000 to 2159 show irregular rough 

behaviours. In particular, the coherency of such rough 

profiles with those of the GECO model agrees with the 

dramatic decay of their residuals in Table 11–15. 

Therefore, such coherency again ascertains the 

convergence of the current algorithm.  

 

5. Concluding remarks and recommendations 
 

The computation of the geoidal radii based on ultra-high 

degree geopotential harmonic models proved to be an 

efficient and convergent algorithm. Both the global and 

local investigations indicated that the geoidal radii of 

curvature exhibit strongly rapid variations. These radii 

possess neither a longitudinal symmetry nor a latitudinal 

dependency. Unlike the ellipsoid, the geoidal principal 

radii do not generally occur along the north and   east 

directions. 
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(a): Profiles along the 27ºN latitude 

 

 
(b): Profiles along the 30ºE meridian 

Figure 7.  Local profiles for the geoidal mean radii 

based on different harmonic degrees 

 

In general, at any point, there could be remarkable 

differences among the meridian and prime-vertical radii 

and the corresponding principal values.  

 

The geoid is a smooth surface that is convex everywhere at 

seas and on land (Meyer et al. 2004; Vaníček and Santos 

2019). Such pioneered opinions were verified in the current 

work, provided the positive principal radii of the geoid at 

all encountered evaluation points. Based on this property, 

it was possible to define and assess the Gaussian radius of 

curvature for the geoid.  

 

It is recommended to further apply the algorithm presented 

in the current wok to assess the geoidal radii of curvature 

over any desired geographical window. Obviously, the 

target resolution of the application in question would judge 

the maximal degree of the geopotential model of choice. 

Particularly, some simple surveying tasks might 

necessitate a realistic value for the geoidal radius along any 

direction, for example, the reduction of long slope 

distances to mean sea level.   

 

Also, it is well known that the torsion balance devices are 

an efficient tool for determining the terrestrial components 

of the curvature tensor (e.g. Völgyesi 2015). So, co-

locating torsion balance devices with gravimeters, mixed 

gravity and gravity gradient observations can be collected. 

After the reduction of these data down to the geoid, detailed 

(or full-resolution) local geoidal radii of curvature can be 

assessed, based on the first principles given in Section (2). 

Furthermore, in view of the smooth behaviour of the 

residual geoidal radii, the remove-restore strategy might be 

tried to compute robust local geoidal radii at points with no 

data. Namely, ultra-high degree model-based radii may be 

removed from those evaluated from scattered dense co-

located and gravity and torsion balance data. Then, the 

resulting residual radii of the geoid are interpolated into the 

target new points, and added back to the respective values 

that are derived from the same harmonic model. This 

stands in analogy with the remove-restore technique for 

local gravity field modelling.  

 

The Gaussian radius of the geoid may be used for defining 

the solid spherical harmonics during the solutions for 

global harmonic models. This proposal stems from the 

validity of the Gaussian curvature for such task. This 

harmonic analysis strategy may be tried and compared with 

the spherical and ellipsoidal harmonic analysis schemes. 

These comparisons might be extended to check the 

efficiency of the corresponding subsequent harmonic 

synthesis results, regarding their fit to the observed 

gravitational data. Accordingly, a further future application 

may be to investigate the use of accurate mean geoidal radii 

in local geoid determination; and the associated 

topographic reductions.  

 

Finally, the current algorithm may be generalized to 

evaluate the different types of radii of curvature for level 

surfaces through surface terrain points. In this 

circumstance, a digital terrain model, or the elevations of 

the scattered points of concern, would be an additional 

requirement. When applicable, this future outlook could be 

extended to the above outlined recommendations. In such 

cases, no doubt would exist regarding the convergence of 

the harmonic series.   
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