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Abstract: The integration of computer vision algorithms and photogrammetric techniques has become an alternative to 

the high-cost Mobile Mapping Systems (MMS) and point cloud generation through Structure from Motion (SfM) 

algorithm is the best example of it. The point cloud generated using SfM is an arbitrary coordinate system and for its 

georeferencing known global coordinates of the camera exposure stations, rotational and translational parameters are 

required. The global coordinates of exposure stations are obtained through GNSS (Global Navigation Satellite System). 

GPS (Global Positioning System) is widely used for getting the positional information of a point. The problem in 

georeferencing the point cloud arises if the coordinates of a few camera exposure stations are unknown due to GPS 

shadowing or poor GDOP (Geometric Dilution of Precision). This issue is common in MMS that use laser scanners, 

GNSS and IMU (inertial measurement unit). In this paper, efforts are made to develop a methodology for handling GPS 

shadowing or poor accuracy for the georeferencing of arbitrary point clouds generated through SfM. The adopted method 

uses a blend of photogrammetric techniques of space resection and space intersection to determine the unknown camera 

exposure stations' coordinates. Bundle adjustment is applied to improve the accuracy of the results obtained. The 

developed methodology is well analyzed in different cases, and the results show good accuracy in respective cases. 
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1. Introduction  

 

Computer vision and photogrammetry are different fields; 

however, their integration provides much easier 3D 

reconstruction from images. Computer vision algorithms 

are mathematical techniques for image-based 

reconstruction (Szeliski 2010). Computer vision 

algorithms are finding their applications both in 

photogrammetry and mobile mapping. The ability of 

computer vision algorithms to provide camera information 

(exterior orientation) has become an alternative to high-

cost IMU (Inertial Measurement Unit)/INS (Inertial 

Navigation Sensors) and thus offer a cost-effective 

solution to high-cost Mobile Mapping technology for 

geospatial data collection with the rapid and easy 

acquisition of the data as the significant advantages (Li 

1997).  

 

The recent developments in digital photogrammetry and 

computer vision-based image processing techniques have 

formed a new milestone for image-based three-

dimensional (3D) reconstruction (Mugnai and Tucci 

2022). Both digital photogrammetry and computer vision 

are different fields, but their integration has numerous 

applications (Granshaw and Fraser 2015). The role of 

computer vision technology in Close range 

photogrammetric applications and mobile mapping 

technology is increasing at a high pace. Close range 

photogrammetry provides a low-cost solution for 

generating georeferenced 3D models, point cloud and 

digital elevation models (DEMs), etc., with good accuracy. 

A plethora of literature is available that reports good 

achievable accuracy through close-range photogrammetric 

applications. The integration of Computer Vision 

algorithms with photogrammetric processes is in high 

demand as this integration results in a cost-effective 

solution to mobile mapping systems (MMS). 

A typical MMS consists of a mobile or moving platform, 

navigation, and mapping sensor. Mapping sensors may be 

metric and non-metric cameras, laser scanners, or 

RADARs. They are used for collecting information about 

the objects to be surveyed. Navigational sensors such as  

Global Positioning System (GPS)/IMU are used for 

obtaining positional and orientation information of the 

mapping sensors (Li 1997).  Navigational sensors play a 

vital role in geocoding the data acquired from camera and 

Laser scanners. However, these sensors are expensive, due 

to which the MMS has been a costly geospatial mapping 

tool (Warnasch and Killen 2002). Despite this, IMU 

accumulates bias with time if not corrected by coupling it 

with GPS. Further, GPS unavailability or lower accuracy 

of GPS signals affect MMS working in GPS shadowed 

environments. GPS shadowed environments are the 

regions where GPS signals are not available or the satellite 

visibility is poor (Spilker 1996). Thus, Computer vision 

algorithms, along with photogrammetric techniques, are in 

high demand. The most widely used computer vision 

algorithm for point cloud generation is the structure from 

motion (SfM). It is used for image-based reconstruction 

and generates a point cloud in an arbitrary coordinate 

system. The integration of SfM with the photogrammetric 

techniques enables the estimation of camera parameters 

and generation of point clouds with reasonable accuracy 

(Yang et al. 2013). Further, if the coordinates of exposure 

stations are known, then the point cloud's georeferencing 

can be done using the direct georeferencing approach, in 

which the ground control points (GCPs) are not required 

(Gabrlik 2015; Rizaldy and Firdaus 2012). However, the 

unavailability or poor GDOP (Geometric Dilution of 

Precision) of GPS signal affects the point cloud's 

georeferencing accuracy (Liu et al. 2022). The possible 

reasons for GPS unavailability or poor accuracy are poor 

GDOP, high-rise buildings in urban areas and dense forest 

canopy, etc. Both photogrammetric and mobile mapping 
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technologies suffer from GNSS (Global Navigation 

Satellite System) signal unavailability and poor accuracy 

in GNSS shadowed regions.  

 

This paper introduces an approach to handle the problem 

of GPS unavailability or lower accuracy in the GNSS 

shadowed regions for the georeferencing of an arbitrary 

point cloud generated using SfM. OSM (Open Street Map) 

Bundler software is a free software that works on SfM. The 

OSM Bundler software (Lourakis and Argyros 2009; 

Snavely et al. 2006, 2008) uses the Structure from Motion 

algorithm for the point cloud generation. PMVS 

(Furukawa and Ponce 2010) and CMVS packages are also 

available with Bundler to convert sparse point cloud to 

dense point cloud. The generated point cloud is in a local 

coordinate system. To georeference it, global coordinates 

of each camera exposure station are required. The 

technique to georeferenced the point cloud with the help of 

camera station coordinates is known as direct 

georeferencing. It does not require ground control points 

(GCPs) on the surface or target (Liu et al. 2022). Again, 

the requirement of GNSS availability with proper accuracy 

is mandatory to achieve better georeferencing accuracy. 

  
2. Related works 

  
Highly advanced real-time kinematic (RTK) GNSS 

receivers used in MMS are available nowadays. These 

RTK receivers are also used in drones or UAVs 

(Unmanned Aerial Vehicles) and capture the location of 

the camera exposure station. Although the accuracy of 

these instruments is high; however, the speed of drones in 

aerial surveys and vehicles’ high speed in MMS may 

distort the positional accuracy of these instruments (Liu et 

al. 2022; Sanz-Ablanedo et al. 2018). Several researchers 

have highlighted that the accuracy of GNSS receivers 

plays a crucial role in the accurate georeferencing of the 

acquired datasets (McMahon et al., 2021). This study also 

focusses on the georeferencing accuracy of the point cloud 

data generated using SfM. SfM is a widely used algorithm 

for photogrammetric point cloud generation and is now 

more common in UAV photogrammetric processing 

(Martínez-Carricondo et al. 2018). However, the direct 

georeferencing of the products of SfM becomes 

challenging in case the accurate GPS locations of the 

camera exposure stations are unavailable or inaccurate. 

 

A lot of work has already been done to improve GPS 

accuracy and handle GNSS unavailability. The capabilities 

of GPS receivers have already improved a lot to provide 

better accuracy in complex environments. Specific models 

are also developed to address the unavailability of GPS 

signals in dense urban and forest areas. Most of the studies 

to handle GNSS unavailability are in the field of intelligent 

driverless transportation. Architecture based on the 

integration of GNSS/INS instruments to update the 

position of a vehicle in the absence of GNSS signals is 

used by (Li et al. 2022). Hassan et al. (2006) present the 

photogrammetric approach to georeference the 

overlapping sequence of images captured through MMS in 

the absence of GPS signals or if weak signals are available. 

Even the proposed method produces good results; 

however, the use of VISAT MMS makes it an expensive 

approach because of its complex setup and high-cost 

instruments. Scarmana (2007) also explains developing a 

prototype to support mobile mapping in GPS unavailable 

areas using photogrammetric concepts, land surveying, 

and dead-reckoning techniques. Digital compass, laser 

range finder, and smartphone supporting GPS are used to 

configure a portable unit. Thus it requires several external 

instruments, which again becomes an expensive approach. 

Choi and Chang (2019) also used these external 

instruments (IMU and GPS) for accurately estimating the 

vehicular position in the shadowed regions. Their 

simulative study provided good accuracy in the shadowed 

areas. One of the studies presented by Nguyen et al. (2019) 

combines two range-based non-GPS localization methods 

by assigning different weights and performing the analysis 

of the combinations. The simulative study uses AOA 

(Angle of Arrival) and RSSI (Received Signal Strength 

Indicator) with different weights to analyze the effects of 

shadowing. It shows that accuracy and precision have 

significantly improved by increasing and decreasing the 

weight of AOA and RSSI, respectively. 

 

The problem of GPS unavailability or poor performance of 

GPS receivers is commonly seen in dense urban areas and 

is well explained by Groves (2011). High-rise buildings in 

urban areas interrupt the proper reception of GPS signals 

and thus act as an obstruction for obtaining the appropriate 

positioning information in dense urban areas.  Groves 

(2011) also explains the limitation of GPS in cross-street 

positioning and presents a shadow matching technique to 

achieve accurate positioning information in dense urban 

areas. In this technique, 3D city models are used to predict 

the availability of GPS signals. GPS, along with other 

GNSS satellites, is modelled to enhance signal availability 

in narrow streets or urban areas with high-rise buildings. 

Clark and Bevly (2008) presented a GPS/INS integrated 

approach to detect the signal attenuation and boost the GPS 

positioning accuracy in a shadowed environment. Several 

high-quality GPS receivers are also developed that support 

the efficient reception of weak GPS signals. Huang et al. 

(2009) explain the implementation of chaotic oscillators to 

enhance weak GPS signal reception. The application of 

non-linear dynamics has resulted in less acquisition time. 

 

Images acquired from different static locations covering an 

object with proper successive overlap were used by 

Jariwala et al. (2014) to generate the three-dimensional 

point cloud by applying the SfM algorithm. 

Georeferencing of the generated three-dimensional point 

cloud was done using the space intersection technique. For 

georeferencing the generated point cloud, exposure station 

coordinates corresponding to the images used for point 

cloud generation are required and are obtained through 

DGPS (Differential GPS) survey. Thus, the impact of GPS 

unavailability or poor accuracy directly affects the 

georeferencing accuracy of the generated point cloud. 

Computer vision algorithms are widely used for image-

based 3D reconstruction. Yang et al. (2013) used the SfM 

algorithm, Clustering Views for Multi-view Stereo 

(CMVS), Patch-based Multi-view Stereo (PMVS) and 

Poisson surface reconstruction techniques for 3D 

generation from the images taken from conventional 
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cameras. The benefit of using a computer vision algorithm 

(SfM) of not requiring any prior information of the 

camera’s internal and exterior orientation parameters is 

highlighted in this study (Arévalo-Verjel et al. 2022). The 

research works highlighted in this section clearly indicate 

the need to handle the problem of GNSS shadowing and 

thus help boost the potential of this study. 

  
2.1 Collinearity equations 
As per the collinearity equations, the camera exposure 

station, an object point, and its image point in a 3D space 

lie along a straight line (DeWitt and Wolf 2000). 

Collinearity equations for space intersection are used to 

determine the coordinates of the unknown camera stations, 

and then bundle adjustment is applied to improve the 

results and achieve high accuracy. This approach can be 

utilized in Mobile Mapping Systems to overcome GPS 

unavailability or GPS shadowing. Figure 1 describes the 

existence of the collinearity condition among camera 

exposure station, object point on the ground, and its image 

point. This basic principle is utilized in the space 

intersection technique to determine an unknown camera 

station’s coordinate. 

 

To determine global coordinates of the points that are 

available on two or more overlapping images, interior and 

exterior orientation parameters are required. These 

orientation parameters are obtained using the Structure 

from Motion algorithm. 

 
Figure 1. Illustration of Collinearity Equation 

 

The collinearity conditions are generally expressed as:   
𝑥𝑎

= 𝑥0 − 𝑓 ∗ [
𝑚11(𝑋𝐴 − 𝑋𝐿) + 𝑚12(𝑍𝐴 − 𝑍𝐿) + 𝑚13(𝑌𝐿 − 𝑌𝐴)

𝑚31(𝑋𝐴 − 𝑋𝐿) + 𝑚32(𝑍𝐴 − 𝑍𝐿) + 𝑚33(𝑌𝐿 − 𝑌𝐴)
] 

(1) 

𝑦𝑎

= 𝑦0 − 𝑓 ∗ [
𝑚21(𝑋𝐴 − 𝑋𝐿) + 𝑚22(𝑍𝐴 − 𝑍𝐿) + 𝑚23(𝑌𝐿 − 𝑌𝐴)

𝑚31(𝑋𝐴 − 𝑋𝐿) + 𝑚32(𝑍𝐴 − 𝑍𝐿) + 𝑚33(𝑌𝐿 − 𝑌𝐴)
] 

(2) 

 

Here, (𝑥𝑎 , 𝑦𝑎) are image coordinates of the object points, 

(𝑥0, 𝑦0) are the principal point locations, 𝑓 is the focal 

length of the camera, 𝑋𝐿 , 𝑌𝐿 , 𝑍𝐿are exposure station 

coordinates, (𝑋𝐴, 𝑌𝐴, 𝑍𝐴) are ground control points, 

(𝑚11, 𝑚12 … 𝑚33) are rotation parameters and are the 

functions of rotation angles (omega, phi, and kappa). The 

principal point location and focal length of the camera are 

intrinsic camera parameters. These parameters can be 

obtained by performing camera calibration. These camera 

parameters are required to handle the positional shift of a 

projected point onto an image plane (Scarmana, 2007). 

 

3. Study area and dataset 

 
The study area to conduct this study includes two 

buildings. The description of the selected buildings is 

given below: 

 

Building 1: The first building chosen for this study is the 

main building of IIRS (Indian Institute of Remote 

Sensing), Dehradun, Uttarakhand. It has a simple 

architecture. Figure 2(a) shows the structure of Building 1. 

Building 2: The second building chosen to validate the 

developed methodology is the building of the Godavari 

Hostel of IIRS, Dehradun, Uttarakhand. This building has 

comparatively complex architecture.  Figure 2(b) shows 

the structure of Building 2. 

 

The dataset used in this study includes the images acquired 

through the NIKON D60 camera without any zoom. The 

global coordinates of the image acquisition locations were 

measured along with the images, using the Trimble R7 

GNSS (Global Navigation Satellite System) receivers. The 

GNSS data was post-processed in the Trimble Business 

Centre (TBC) software.  

 

 
Figure 2. (a) Building 1 and (b) Building 2 

 
4. Methodology for handling GNSS shadowed regions 

 

The framework to carry out this study starts with the data 

collection task. The overlapped images of the study area 

are acquired sequentially using NIKON D60 camera 

mounted over a tripod. A total of 19 images are captured 

to cover the complete building façade. Along with image 

acquisition, the position of the camera exposure station is 

also measured using the Trimble R7 GNSS receiver. The 

global coordinates of the camera exposure station are 

required to georeferenced the point cloud data. To avoid 

the issue of time synchronization among sensors, the study 

is carried out in static conditions. The coordinates of 

camera exposure stations are obtained by the post-

processing of DGPS data in Trimble Business Centre 

software. The developed methodology is tested on 

Building 1. In this case, the location of a few camera 

exposure stations assumed to be unknown, as shown in 

Figure 3. Thus, it requires that the unknown locations of 

camera exposure stations should be determined for 

georeferencing the point cloud generated from images 

using the SfM technique. The methodology to handle the 

GPS unavailability problem is shown in Figure 4. The 

images captured using the digital camera are processed 

(a
) 

(b
) 
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using OSM Bundler software (Snavely et al. 2006, 2008) 

to generate the sparse point cloud. Bundler uses the SfM 

computer vision algorithm for 3D sparse reconstruction. 

SfM is a highly robust computer vision algorithm that 

generates the sparse point cloud from overlapping images. 

It is the robustness of SfM that makes it suitable to apply 

it on disordered images.  

 

 
Figure 3. GPS unavailability problem 

 

The point cloud generation through SfM include SIFT 

(Scale Invariant Feature Transform), ANN (Approximate 

Nearest Neighbour) (Mount and Arya 2010), RANSAC 

(Random Sample Consensus) algorithm (Fischler and 

Bolles 1981) and SBA (Sparse Bundle Adjustment) 

(Lourakis and Argyros 2009). The SIFT algorithm was 

developed by (Lowe, 1999) and is used for detecting the 

features in an image and matching them on other images 

using the Euclidean distance measurement. SIFT is a 

robust algorithm, independent of the image scale and 

orientation. It localizes the detected features and preserves 

their orientation information obtained through gradient 

analysis. In SIFT, multiple views are generated using the 

Gaussian scale space function as shown in equation (3) 

(Lowe 2004).  

               𝐿(𝑥, 𝑦, 𝜎) = 𝐺(𝑥, 𝑦, 𝜎) ∗ 𝐼(𝑥, 𝑦)                      (3) 

Here * is representing the convolution of variable Gaussian 

scaling function (𝐺(𝑥, 𝑦, 𝜎)) and the input image (𝐼(𝑥, 𝑦)). 

As given in equation (4), the DoG (Difference of Gaussian) 

method where the difference of two images are taken is 

implemented for getting the extrema of scale space.  

              𝐷(𝑥, 𝑦, 𝜎) = 𝐿(𝑥, 𝑦, 𝑘𝜎) − 𝐿(𝑥, 𝑦, 𝜎)               (4) 

 

In equation (4), 𝐷(𝑥, 𝑦, 𝜎) represents the difference 

between a scaled image and its unscaled version. To detect 

the stable features on the difference image (𝐷(𝑥, 𝑦, 𝜎)), 

extremas are found by identifying the local maxima and 

minima by comparing every pixel to its 26 neighbours, in 

which eight neighbours belong to the same scale image and 

nine each in upscaled and downscaled images. Then, to 

remove the insignificant features, localizing the keypoints 

is done by computing the Laplacian on the difference 

images. It is computed by taking the second derivative of 

the difference image as given in equation (5). In this 

process, keypoints having poor contrast or are present on 

the edges are removed (Lowe 2004).  

                             𝑧 = −
𝜕2𝐷−1

𝜕𝑥2  
𝜕𝐷

𝜕𝑥
                                    (5)  

 

The value of 𝑧 signifies the stability of a key point. A key 

point is discarded, if its value is below a given threshold as 

it is considered to be the keypoint with lower contrast. A 

Hessian Matrix of order 2x2 is formed for the location of 

the keypoint. The ratio of this matrix's highest and lowest 

eigen vectors is compared to the curvature difference in the 

horizontal and vertical direction on the difference image.  

This comparison results in the removal of the keypoints 

present on the edges. Further, the selected keypoints are 

assigned an orientation. This orientation assignment ot the 

keypoints makes the algorithm orientation independent. 

Magnitude gradient and the orientation angles are 

estimated on the Gaussian smoothened image as per 

equations (6) and (7).  

𝑚(𝑥, 𝑦) =

√(𝐿(𝑥 + 1, 𝑦) − 𝐿(𝑥 − 1, 𝑦))2 + (𝐿(𝑥, 𝑦 + 1) − 𝐿(𝑥, 𝑦 − 1))2    

(6) 

 

𝜃(𝑥, 𝑦) = tan−1 (
(𝐿(𝑥,𝑦+1)−𝐿(𝑥,𝑦−1))

(𝐿(𝑥+1,𝑦)−𝐿(𝑥−1,𝑦))
)              (7) 

 

 

 

 

 
Figure 4. Approach to handle GPS unavailability 
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Estimated gradient of the orientation is then used to 

construct a histogram of orientation. The global maxima of 

the peaks in the histogram is used along with the other 

local maxima with height up to 80% of the highest peak, 

to assign the orientation to a keypoint. After orientation 

assignment, the image gradient data is further used for the 

creation of keypoint descriptors. The rotation in gradient 

data is made to align it with the keypoint’s orientation and 

further assigned a weight by Gaussian window. The 

generated output is subsequently utilized for creating 

histograms with keypoint at the centre. The keypoint 

descriptors are arranged in grids of order 4x4. Each grid 

cell has a further 8 bin orientation histogram representing 

major directions as per the compass and their midpoints. 

This generated an output vector which is known as SIFT 

keys. Each feature vector or SIFT key contains 128 

elements. These feature vectors or SIFT keys are further 

used for the feature matching task. For feature matching, 

firstly the SIFT feature descriptors are computed for an 

image and the corresponding SIFT keys are stored in a 

database. These feature vectors or SIFT keys are matched 

with the feature vectors of a new image.  The matching 

depends on the Euclidean distance estimation among the 

feature vectors (Lowe 1999; Lowe 2004). The task of 

feature matching consumes a lot of time. Thus, ANN is 

used to optimize the feature matching process by 

identifying the closest neighbours. It uses kd-tree which is 

generated with every keypoints of an image (Mount and 

Arya 2010) so that any queried point could be easily 

matched with the keypoints of the other image. It uses 

Minkowski metrics that comprises of Manhattan, 

Euclidean and max distance. Feature matching also results 

in a few outliers, and removal of these outliers is 

necessary. RANSAC is used here to remove the outliers. 

RANSAC, an iterative algorithm, implements the least 

squares method to identify the outliers present in the 

dataset. Then the fundamental matrix is computed that 

preserves the information about the epipolar geometry and 

keep a track of relationship of matched feature points. The 

best matched image pairs are identified through 

fundamental matrix and a new image is taken further to 

find the matches again. Finally, the bundle adjustment is 

applied for parameters optimization and reconstruction of 

the sparse point cloud. 

 

Along with the point cloud, Bundler generates a camera 

parameter file that contains the interior and exterior 

orientation parameters of each exposure station. These 

parameters are further used to solve the collinearity 

equations. Before data acquisition, the camera's intrinsic 

parameters like focal length, principal point location, and 

lens distortion parameters are estimated by performing 

camera calibration. To obtain the coordinates of an 

unknown camera station, global coordinates of at least two 

common points on the adjacent image (whose camera 

station coordinates are known) are required. These 

consecutive images should have proper overlap so that a 

single point is visible in at most two images. Since the 

coordinates of the exposure station of the adjacent image 

are known, so, the global coordinates of the common 

points can be calculated using collinearity equations. In 

this case, there are three unknowns (𝑋𝐴, 𝑌𝐴, 𝑍𝐴) so at least 

three equations are required to solve these equations. Since 

a point is available in at least two images, so four equations 

are obtained for a point (two from each image). Then the 

least square adjustment is applied to obtain the solution. 

Further to obtain the global coordinates of the unknown 

exposure station are calculated by using these known 

points as GCPs to solve equations 1 and 2. In this case, the 

unknowns are(𝑋𝑙 , 𝑌𝑙 , 𝑍𝑙). Therefore, two points are 

sufficient to obtain the solution of collinearity equations. 

Here more number of common points can increase the 

accuracy; however, two points are enough to get the 

solution of collinearity equations. A code to determine the 

coordinates of an unknown camera station is developed in 

Matlab as well as in Python for the implementation of 

collinearity equations. These obtained coordinates are used 

as initial values to perform bundle adjustment in Leica 

Photogrammetry Suite (LPS) to improve the accuracy of 

the obtained results. 

 

5. Results and discussion 

 

To handle the GPS shadowing or poor accuracy problem, 

a methodology is developed and is analyzed in different 

cases based upon the no. of photographs as well as control 

points. Different cases investigated are listed in Table 1. A 

program is developed in Python as well as in MATLAB to 

determine the coordinates of an unknown camera station 

by implementing the collinearity equations. As mentioned 

previously, the coordinates of camera exposure stations are 

obtained by processing the GPS data in Trimble Business 

Centre software. The horizontal and vertical accuracies 

obtained in the post-processing of GPS data are 0.6 cm and 

0.9 cm, respectively. As mentioned in the methodology, 

control points are taken from the images whose camera 

exposure station coordinates are known. More number of 

control points provides better results. For this study, two 

buildings are chosen, one for developing the framework 

and another to verify it. A total of 19 images of Building 1 

were taken for this study. The results obtained for different 

cases are explained in the following sections: 

 

5.1 Case 1 

Out of 19 images, the location of the camera station 

corresponding to image number 8 is assumed to be 

unknown. Inputs used to solve the collinearity equations 

and obtained coordinates for image number 8 are shown in 

Table 2.  

 

Figure 5 shows the georeferenced point cloud of Building 

1 and Building 2. The locations of all 19 camera exposure 

stations are shown in Figure 6.  

 

An error of 12.65 m, 11.12 m and 9.54 m in easting, 

northing and height are obtained by solving the collinearity 

equations with the help of only two control points. These 

two control points were taken from the left adjacent image. 

To improve the solution, triangulation and bundle 

adjustment were applied using the Leica Photogrammetric 

Suite (LPS) of Erdas Imagine. The coordinates obtained by 

solving the collinearity equations were taken as initial 

coordinates during triangulation in LPS. The obtained 

error in coordinates with a different number of GCPs used 

in triangulation is shown in Table 3. The ground control 

points that are listed in the table are those points that were 

118



Journal of Geomatics  Vol. 16, No. 2, October 2022 

 

used to adjust the block in LPS. From Table 3, it is clear 

that bundle adjustment improves accuracy and also with 

more ground control points accuracy improves. It is also 

clear that with 30 ground control points, errors in easting, 

northing and height are 3.01 m, 3.98 m and 2.07 m, 

respectively. This shows that with more GCPs, the 

accuracy improves. However, there is no significant 

change in the accuracy. 

 

The collinearity equations are again solved with six control 

points and corresponding errors in easting, northing and 

height are obtained as 2.73 m, 2.98 m, and 2.12 m. In this 

case, three control points were taken from the left image 

and the other three from the right image adjacent to the 

image whose exposure station coordinates are unknown. 

After processing the block in LPS, the error obtained in the 

coordinates of the unknown camera station were 0.86 m, 

0.92 m, and 0.81 m respectively in easting, northing and 

height with 25 GCPs. It was found that the control point 

locations used for solving the collinearity equations play a 

significant role in the calculation of unknown camera 

exposure station coordinates. In case 1a, two almost 

collinear points were used and the error obtained was 

significant, whereas, in case 3 control points on adjacent 

images were well distributed and the error obtained was 

comparatively much less.

  

Table 1. Description of different cases used for analysis 

Cases Number of images No. of unknown camera 

stations 

No. of control points used 

for solving collinearity 

equations 

1a 19 1 2 

1b 19 1 6 

2a 4 1 (Last image) 6 

2b 4 1(3rd image) 6 

2c 4 2 6 

 

Table 2. Inputs used to solve collinearity equations and obtained coordinates of unknown camera station 

Image coordinates of two points 

used (mm) 
[

534.2467 −239.4600
−318.0120 −239.7760

] 

Principal Point coordinates (mm) [11.930593 8.037962] 

Rotation Parameters (rad) 
[

0.9957 0.0768 0.0520
−0.0747 0.9964 −0.0396
−0.0548 0.0355 0.9979

] 

GCPs (m) [
215814.288539 3360261.242831 655.161734
215814.032010 3360262.015736 655.103009

] 

  

Calculated coordinates of 

exposure station (m) [
215804.785031
3360262.42872
654.86307229

] 

 

 
Figure 5. Georeferenced point cloud of Building 1 and Building 2 
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Figure 6. Location of camera exposure stations Building 1 (left) and Building 2 (right) 

 

Table 3. Error in Coordinates 

No. of Ground Control Points Frame No. Easting(m) Northing(m) Height(m) 

25 8 3.25 4.66 2.18 

30 8 3.01 3.98 2.07 

 

5.2 Case 2 

The developed methodology is also analyzed by reducing 

the number of Images. This case is further divided into 

three subcases. In this case, the total number of control 

points used is six and a total of 4 images are taken.  

 

5.2.1 Case 2a 

Out of 4 images, the exposure station coordinates of last 

(4th) image frame are assumed as unknown. Error in 

Easting, Northing, and Height is shown in Table 4. 

 

Table 4. Error in coordinates of the 4th frame 

Frame 

No. 

Easting(m) Northing(m) Height(m) 

4 0.90 1.65 1.19 

 

5.2.2 Case 2b 

Now, the approach is applied when the coordinates of a 

middle camera station (3rd image frame) are unknown. 

Here, it is assumed that the third camera station is 

unknown, and the obtained error is shown in Table 5. 

 

Table 5. Error in coordinates of the 3rd image frame 

Frame 

No. 

Easting(m) Northing(m) Height(m) 

3 0.91 0.99 0.50 

 

It is clear from Table 5 that the accuracy improves if the 

coordinates of the adjacent (left and right both) camera 

stations are known.  

 

5.2.3 Case 2c 

Considering the case when the coordinates of the two 

camera stations are unknown. It is assumed that the 

coordinates of the third and fourth camera stations are 

unknown. The error obtained in the coordinates of the 3rd 

and 4th camera stations is shown in Table 6.  

 

Table 6. Error in coordinates of 3rd and 4th camera 

station 

Frame 

No. 

Easting(m) Northing(m) Height(m) 

3 0.84 1.95 0.50 

4 1.14 2.24 1.72 

 

It is clear from Table 6 that as the number of unknown 

camera stations increases, the accuracy reduces. The error 

in the coordinates of the fourth camera station indicates 

that the error increases if the adjacent camera stations are 

unknown. 

 

The developed methodology is verified on the captured 

images of Building 2. The developed framework works 

well and produces similar results. 

 

6. Conclusions 

 

Even highly efficient MMS suffers from the tracing 

through GNSS shadowed regions and handling such 

constraints becomes essential to build up a low-cost MMS. 

The methodology developed in this research work to 

address GPS unavailability problems for the 

georeferencing of an arbitrary point cloud generated using 

SfM is well analyzed in different cases. It provides a cost-

effective solution to handle GPS unavailability in 

shadowed regions. A collinearity-based solution is 

suggested treating the global transformed local points as 

GCPs for obtaining the position of an unknown camera 

station. Various cases analyzed in this research show that 
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more distributed GCPs improve the estimation of locations 

by performing bundle adjustment. The error increases if a 

large number of consecutive camera stations are unknown. 

Known adjacent camera stations produce good results. 

This study integrates computer vision algorithms and 

photogrammetric-based approaches to handle GPS 

unavailability in shadowed areas. It can be utilized in 

MMS and to supplement IMU corrections.   

 

Acknowledgment 

 

We thank the Director, Indian Institute of Remote Sensing, 

Dehradun, for providing us with the necessary hardware 

and infrastructure to conduct this study. 

 

References 

 

Arévalo-Verjel A. N., J. L. Lerma, J. F. Prieto, J. P. 

Carbonell-Rivera and J. Fernández (2022). Estimation of 

the Block Adjustment Error in UAV Photogrammetric 

Flights in Flat Areas. Remote Sensing 2022, Vol. 14, Page 

2877, 14(12), 2877. https://doi.org/10.3390/RS14122877 

Choi E. and S. Chang (2019). An Adaptive Tracking 

Estimator for Robust Vehicular Localization in Shadowing 

Areas. IEEE Access, 7, 42436–42444. 

https://doi.org/10.1109/ACCESS.2019.2907647 

Clark B. J. and D. M. Bevly (2008). GPS/INS integration 

with fault detection and exclusion in shadowed 

environments. In Record - IEEE PLANS, Position 

Location and Navigation Symposium (pp. 1–8). 

https://doi.org/10.1109/PLANS.2008.4569963 

DeWitt B. A. and P. R. Wolf (2000). Elements of 

Photogrammetry(with Applications in GIS) (3rd ed.). New 

York: McGraw-Hill Higher Education. 

Fischler M. A. and R. C. Bolles (1981). Random sample 

consensus: a paradigm for model fitting with applications 

to image analysis and automated cartography. 

Communications of the ACM, 24(6), 381–395. 

https://doi.org/10.1145/358669.358692 

Furukawa Y. and J. Ponce (2010). Accurate, dense, and 

robust multiview stereopsis. IEEE transactions on pattern 

analysis and machine intelligence, 32(8), 1362–1376. 

Gabrlik P. (2015). The use of direct georeferencing in 

aerial photogrammetry with micro UAV. IFAC-

PapersOnLine, 28(4), 380–385. 

https://doi.org/10.1016/j.ifacol.2015.07.064 

Granshaw S. I. and C. S. Fraser (2015). Editorial: 

Computer Vision and Photogrammetry: Interaction or 

Introspection? The Photogrammetric Record, 30(149), 3–

7. https://doi.org/10.1111/phor.12092 

Groves P. (2011). Shadow Matching: A New GNSS 

Positioning Technique for Urban Canyons, 417–430. 

https://doi.org/10.1017/S0373463311000087 

Hassan T., C. Ellum and N. El-Sheimy (2006). Bridging 

land-based mobile mapping using photogrammetric 

adjustments. In Proceedings of the ISPRS Commission I 

Symposium ‘‘From Sensors to Imagery. Citeseer. 

 

Huang P., Y. Pi and Z. Zhao (2009). Weak GPS signal 

acquisition algorithm based on chaotic oscillator. Eurasip 

Journal on Advances in Signal Processing, 2009. 

https://doi.org/10.1155/2009/862618 

Jariwala J. J., A. Bhardwaj, S. Raghavendra, and K. 

Khoshelham (2014). Feasibility of Mobile Mapping 

System by Integrating Structure from Motion(SfM) 

approach with Global Navigation Satellite System. In 

Proceedings of AGSE 2013: The Geospatial Momentum 

for Society and Environment (Vol. 6, pp. 116–132). 

Li B., G. Chen, Y. Si, X. Zhou, P. Li, P. Li and T. Fadiji 

(2022). GNSS/INS Integration Based on Machine 

Learning LightGBM Model for Vehicle Navigation. 

Applied Sciences 2022, Vol. 12, Page 5565, 12(11), 5565. 

https://doi.org/10.3390/APP12115565 

Li R. (1997). Mobile mapping: An emerging technology 

for spatial data acquisition. Photogrammetric Engineering 

and Remote Sensing, 63(9), 1085–1092. 

Liu X., X. Lian, W. Yang, F. Wang,Y.  Han and Y. Zhang 

(2022). Accuracy Assessment of a UAV Direct 

Georeferencing Method and Impact of the Configuration 

of Ground Control Points. Drones 2022, Vol. 6, Page 30, 

6(2), 30. https://doi.org/10.3390/DRONES6020030 

Lourakis M. I. A. and A. A. Argyros (2009). SBA: A 

software package for generic sparse bundle adjustment. 

ACM Transactions on Mathematical Software, 36(1), 1–

30. https://doi.org/10.1145/1486525.1486527 

Lowe D. G. (1999). Object Recognition fromLocal Scale-

Invariant Features. IEEE International Conference on 

Computer Vision.  

Lowe D. G. (2004). Distinctive Image Features from 

Scale-Invariant Keypoints. International Journal of 

Computer Vision 2004 60:2, 60, 91–110. 

https://doi.org/10.1023/B:VISI.0000029664.99615.94 

Martínez-Carricondo P., F. Agüera-Vega, F. Carvajal-

Ramírez, F. J. Mesas-Carrascosa, A. García-Ferrer and F. 

J. Pérez-Porras (2018). Assessment of UAV-

photogrammetric mapping accuracy based on variation of 

ground control points. International Journal of Applied 

Earth Observation and Geoinformation, 72, 1–10. 

https://doi.org/10.1016/J.JAG.2018.05.015 

McMahon C., O. E. Mora and M. J. Starek (2021). 

Evaluating the Performance of sUAS Photogrammetry 

with PPK Positioning for Infrastructure Mapping. Drones 

2021, Vol. 5, Page 50, 5(2), 50. 

https://doi.org/10.3390/DRONES5020050 

Mount D. M. and S. Arya (2010, January 27). ANN - 

Approximate Nearest Neighbor Library. 

http://www.cs.umd.edu/~mount/ANN/. Accessed 5 

August 2022 

Mugnai F. and G. Tucci (2022). A Comparative Analysis 

of Unmanned Aircraft Systems in Low Altitude 

Photogrammetric Surveys. Remote Sensing 2022, 4(3), 

726.  

Nguyen N. M., L. C. Tran, F. Safaei, S. L. Phung, P. Vial, 

N. Huynh., et al. (2019). Performance evaluation of non-

GPS based localization techniques under shadowing 

121



Journal of Geomatics  Vol. 16, No. 2, October 2022 

 

effects. Sensors (Switzerland), 19(11), 1–21. 

https://doi.org/10.3390/s19112633 

Rizaldy A. and W. Firdaus (2012). Direct georeferencing: 

A new standard in photogrammetry for high accuracy 

mapping. In International Archives of the 

Photogrammetry, Remote Sensing and Spatial Information 

Sciences - ISPRS Archives (Vol. 39, pp. 5–9). 

https://doi.org/10.5194/isprsarchives-XXXIX-B1-5-2012 

Sanz-Ablanedo E., J. H. Chandler, J. R. Rodríguez-Pérez 

and C. Ordóñez (2018). Accuracy of Unmanned Aerial 

Vehicle (UAV) and SfM Photogrammetry Survey as a 

Function of the Number and Location of Ground Control 

Points Used. Remote Sensing 2018, Vol. 10, Page 1606, 

10(10), 1606. https://doi.org/10.3390/RS10101606 

Scarmana G. (2007). Mobile mapping in gps-denied areas: 

a hybrid prototype. In A. Vettore & N. El-Sheimy (Eds.), 

The 5th International Symposium on Mobile Mapping 

Technology. Padua, Italy.  

Snavely N., S. M. Seitz and R. Szeliski (2006). Photo 

tourism: exploring photo collections in 3D. In ACM 

transactions on graphics (TOG) (Vol. 25, pp. 835–846). 

ACM. 

Snavely N., S. M. Seitz and R. Szeliski (2008). Modeling 

the World from Internet Photo Collections. International 

Journal of Computer Vision, 80(2), 189–210. 

https://doi.org/10.1007/s11263-007-0107-3 

Spilker J. J. J. (1996). Foliage Attenuation For Land 

Mobile Users. In Global Positioning System: Theory and 

Applications, Volume I (pp. 569–583). American Institute 

of Aeronautics and Astronautics. 

https://doi.org/doi:10.2514/5.9781600866388.0569.0583 

Szeliski R. (2010). Computer vision: algorithms and 

applications. Springer Science & Business Media. 

Warnasch A. and A. Killen (2002). Low cost, high G, 

micro electro-mechanical systems (MEMS), inertial 

measurements unit (IMU) program. Position Location and 

Navigation Symposium, 2002 IEEE. 

https://doi.org/10.1109/PLANS.2002.998922 

Yang M.-D., C.F. Chao, K. S. Huang, L. Y. Lu and Y. P. 

Chen (2013). Image-based 3D scene reconstruction and 

exploration in augmented reality. Automation in 

Construction, 33, 48–60. 

https://doi.org/10.1016/j.autcon.2012.09.017

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

122




