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Abstract: The risk of forest fires is affected by various factors such as vegetation density, topography, human
activities, and climate patterns. These factors remain relatively constant over time, at least during the fire season.
To manage forests and ensure protection against fires, fire-cycle analysis is performed which includes creating a
map of potential fire ignition and preparing a vulnerability map that can assist in controlling the spread of fire.
Accurate data is crucial for forest management, and geospatial technology provides reliable information. By
providing accurate information, geospatial technology can help prevent and mitigate damage caused by forest
fires, while also promoting sustainable land use practices. The study focused on assessing forest fire risk in the
Malkangiri district of Odisha, India, using geospatial technology and the AHP method. The final risk map was
categorized into five zones, namely very high, high, moderate, low, and very low, which can help guide forest
management and firefighting efforts in the area. To validate these forest fire risk zones, the study used fire points
data from the office of PCCF, Odisha from FIRMS. The results showed that the forest fire risk was high in the
low to moderate elevation ranges, with most fire points overlapping in the very high-risk zones of the map.
Anthropogenic activities have been a major cause of forest fires in tropical regions. Overall, the study
demonstrated the effectiveness of using geospatial technologies and the AHP method for assessing forest fire risk.
The results can help in developing strategies to prevent and mitigate the impact of forest fires, particularly in areas
with high-risk zones, such as the Malkangiri district of Odisha, India.
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1. Introduction

1.1 Forest fire and Geospatial Technology

Forest fires pose a significant risk and threat to the
forest ecosystem, whether they are caused by natural
occurrences or human activity. These fires have
resulted in a loss of biodiversity, forest degradation,
and fragmentation. While forest and wild land fires can
be considered vital natural processes that promote
vegetation succession, their uncontrolled and improper
use can have serious negative impacts on the
environment and human society. In India, more than
2% of the total forest area is affected by fire each year,
with an average of over 34,000 hectares of forest being
burned annually (Farooq et al., 2022). While some of
these fires may be incidental, the majority are
deliberately caused. Fires are a frequent occurrence in
forests worldwide, with both global ecological impacts
and regional socio-economic challenges. They play a
critical role in changing forest composition and
structure but also pose environmental hazards that can
negatively impact the atmosphere, infrastructure, and
human well-being (Farooq et al., 2022). In India, forest
fires contribute to black carbon emissions that changes
surface albedo amount and increase snow melt from
the Himalayan mountains (You & Xu, 2022). Forest
managers, policy makers, climate modelers, and the
scientific community are interested in evidence-based
approaches to map forest fire susceptibility and
understand the potentially fatal consequences of fires
(Das et al., 2023). This information is crucial for

regulating negative impacts on potentially affected
groups and supporting conservation and restoration
efforts. Accurate prediction of forest fire risk is very
much  important for  promoting  sustainable
development, which will support resource allocation,
early warning systems, emergency services, forest
management and forest planning (Tuyen et al., 2021).

Remote sensing data and GIS techniques have been
increasingly used in natural resource and forest
management to provide accurate and meaningful
information for decision-making. Satellite imagery
and other remote sensing data offer specifics on
topography, vegetation cover, and other environmental
elements that influence fire risk (Michael et al., 2021).
Models for forecasting the likelihood and intensity of
fires in various locations can then be created by
combining this data with other data, such as climatic
patterns and human activity, using GIS techniques.

These predictive models can then be used to create
management strategies that try to lower the risk of fire,
like installing firebreaks, enforcing fire safety laws, or
removing bushes from high-risk areas. Furthermore,
firefighting teams can react swiftly and efficiently to
contain and put out fires by using GIS techniques to
track and monitor the spread of fires in real-time
(Nikhil et al., 2021).
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Understanding and controlling the risk of fire has been
made much easier with the use of remote sensing data
and GIS techniques in natural resource and forest
management. These resources can support sustainable
land use practices while preventing and lessening the
harm caused by wildfires by offering precise and
timely information.

1.2 Global Perspective:

Forest fires are becoming more commonplace
worldwide, with Asia experiencing the majority of
these incidents. In addition to posing a threat to human
life, wildfires cause significant losses in terms of both
people and property (Filkov et al., 2020). An important
aspect of managing forest fires is the prediction of
future flames. It is crucial to the allocation of
resources, mitigation, and recovery efforts. As a result,
many forest authorities have found that using forest
fire risk assessment to help allocate and organize
firefighting resources is very effective (Schinko et al.,
2023). A fire risk assessment is also essential for
preparing evacuations or calculating insurance costs.
GIS and remote sensing techniques have been widely
used to assess and forecast the frequency of fires, and
satellite data can help detect forest fires in varied land
uses.

1.3 Forest Fire in India:

21% of India is filled with forests and 53% of these
forests are having very high and high risks of forest fire
incidence (Milanovi¢ et al., 2021). The increase is not
just in the incidence of forest fires but there’s also a
very significant amount of increase in the area. In the
last 13 years, over 7 lakh km? of our forest area has
been affected due to fires (Gupta et al., 2022).

Many destructive forest fire incidents took place in our
country. While the largest of all was the Bandipur
incident, we chose Odisha as our target region for the
pilot because, over the last three years, Odisha has
consistently been recorded as the state with the highest
number of fire alerts (Das et al., 2023).

1.4 Odisha and Its Forest

Almost one-third of Odisha contains forests which are
about 51,968 km?. Out of which, 538 km? are forests
with a density more than 70 percent (high canopy
density) and 23,656 km? come under the moderately
dense category (Ashis Senapati, 2021). Odisha is a
state with 4™ highest forest cover in India, preceded by
Madhya  Pradesh,  Arunachal Pradesh, and
Chhattisgarh. Zooming into our study area, Malkangiri
is a district in the southernmost region of Odisha.
Almost 76 percent of the district area is filled with
forests and only a selected amount of people live in the
urban areas. The agricultural land is comparatively
very low at only about 22 percent. Malkangiri has a
very low literacy rate, lower than the national average
of India since it’s underdeveloped and is not much
urbanized.
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Forest fire risk is influenced by factors such as
vegetation density, topography, human activities, and
climate patterns, which exhibit relative stability during
the fire season (Parvar et al., 2024). Effective forest
management employs fire-cycle analysis,
encompassing the creation of ignition potential and
vulnerability maps to control fire spread. Accurate data
is crucial for this purpose, and remote sensing data and
GIS techniques are instrumental (Tian et al., 2022).
Satellite imagery provides insights into vegetation
cover, topography, and environmental factors affecting
fire risk. GIS integrates this information with data on
human activities and climate patterns to formulate
predictive models for assessing fire likelihood and
severity in diverse areas. This information facilitates
the development of management plans to mitigate fire
risk through strategies like clearing high-risk areas,
enforcing safety regulations, and establishing
firebreaks (Naser et al., 2025). GIS techniques enable
real-time monitoring of fire spread for swift response
and containment. The synergy of remote sensing data
and GIS techniques is pivotal in natural resource and
forest management, offering precise information to
prevent and mitigate damage from forest fires, thereby
promoting sustainable land use practices.

In this context earth observation data can be play a very
important role, specifically for derivation of the verity
of spatial information related to the forest fire such as
meteorological information, land use land cover and
topography. At the same time multi criteria decision
making (MCDM) can play an important role in this
case to identify the risk zone, by using different
variables that are responsible for forest fire along with
by assigning weight to the variables, in this case
methods such as logistic regression, artificial neural
networks (ANN), analytical hierarchy process (AHP)
can help to map and identify the forest fire risk area
(Tien Bui et al., 2016; Chen et al., 2001; Satir et al.,
2016). AHP and EO data can be combined together to
create a map of the risk of forest fires (Eskandari &
Miesel, 2017).

The study uses the AHP method and geospatial
technologies to assess the risk of forest fires in the
Malkangiri district of Odisha. The study's robustness
can be increased by further validating the identified
risk zones using fire point data from the Principal
Chief Conservator of Forests (PCCF) office in Odisha.
The current study investigates how the AHP method
and multi-sensor geospatial technologies can be used
to evaluate fire risk in the Malkangiri district of
Odisha, India.

2. Study Area
Malkangiri District of Odisha covers of an area of
5,791 km? and lays between 17° 45°N to 18° 40°N

latitudes and 81° 10° E to 82° E longitude (Pattanaik et
al., 2008) (Figure 1). The district is surrounded by
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Koraput district, Visakhapatnam and East Godavari
districts of Andhra Pradesh in the east, in the West
Bastar district of Chhattisgarh, Koraput district of
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Odisha in the north and East Godavari and Khammam
districts of Andhra Pradesh in the south respectively
(Suchitra et al., 2014).
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Figure 1: Malkangiri District, Odisha

The general topography of the district is broken
mountain intercepted by riverbeds and water body
present there while the elevation of the district ranges
from 400 meters to 1200 meters near western side to
eastern side respectively having numerous streams
from the hills drain into major river such as Sabari,
Sileru, Potteru, Kolab and Machhkund (Chintala et al.,
2004). The soil of the study area is characterized by
black soil, which is very rich in organic matter. The
climatic condition of the area is directly influenced by
variation of elevation (Pattanaik et al., 2011). In the
winter the district experience average daily minimum
temperature of 11.2° C and maximum temperature
seldom touches 43°C in summer during the summer
(Pattanaik et al., 2011).

3. Dataset and Methodology

3.1. Dataset

Landsat 9 data was used for vegetation and
temperature parameters. Four separate bands from the
Landsat 9 sensor were presented in this study: red
(Band 4), Near-Infrared (NIR) Band 5, Thermal
Infrared (TIR) Bands 10 and 11, and also Shortwave
Infrared (SWIR) Band 6. These groups selected
several variables to extract in our next steps of
research. The surface temperature of the study area

was obtained by using TIRS-1, Thermal Infrared
Sensor, data from band 10 of Landsat 9. Also, NDMI,
Normalized Difference Moisture Index, and NDVI-
Normalized Difference Vegetation Index were
computed from that satellite dataset acquired from
Landsat on standardized methodology (Lahmar &
Akakba, 2024). All sets of data were collected by a
reputable source platform known as United States
Geological Survey USGS Earth Explorer. To develop
elevation, slope, and aspect data, we utilised the
Digital Elevation Model of Carto-DEM from NRSC-
Bhuvan geoportal (https://bhuvan.nrsc.gov.in).

3.2. Methodology

The methodology of this study (Figure 2 used data
from NDVI, NDMI, and LST as well as LULC that
were downloaded from Landsat 9. In addition, Carto-
DEM generated by Cartosat-1 satellite was utilized to
extract elevation, slope, and aspects information.
Meteorological support information including the
wind speed product from ERAS (Zhai et al., 2022) has
also been used in this analysis. The AHP method which
is one of the widely used techniques under the Multi-
Criteria Decision Making (MCDM) methods has been
employed to assess Forest Fire Risk Zoning over the
study region.
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Figure 2: Methodology

At this stage of methodology development, these
geodata layers have been normalized into five classes
before taking up further analysis wherein Class 1
denotes low vulnerability to fire and Class 5 denotes
high wulnerability to fire for each theme in
consideration. The reclassification of layers into five
classes helps segregate the data into some discrete
form that helps meaningful comparison between layers
and integration of various parameters for analysis.

Further, to comprehensively assess the influence of
each factor on forest fire risk in the study area, weight
values are assigned to indicate their relative
importance. These weight values are determined
through the pairwise comparison process proposed by
Saaty in 1980 (Tavana et al., 2023). This systematic
evaluation allows for a more rigorous understanding of
each factor's contribution to the overall forest fire risk,
facilitating the development of an effective risk
assessment model (Kumari & Pandey, 2020).

It is crucial to recognise that different contributing
factors have differing degrees of influence when
conducting forest fire risk assessment. It is impossible
to fully comprehend a region's forest fire risk by
examining just one causative factor. Numerous factors,
both natural and man-made, interact intricately to
affect forest fires. Therefore, to properly assess and
model forest fire risk, it is imperative to take into
account all potential pertinent variables, such as
vegetation, topography, climate, and human-induced

factors. As described by (Shaban et al., 2001), an
integrated approach is used to address this and
ascertain the relative significance of each component.
The rate factor is determined by adding the points that
represent the effects of each factor, with one point
being assigned for a major effect and half a point for a
minor effect (Hammami et al., 2019).

Determining the decision problem is the first step in
the Analytic Hierarchy Process (AHP). The second
step involves creating a pairwise comparison matrix of
the conditioning factors using Thomas L. Saaty's
(1990) importance value scale. The significance of
each factor in relation to the other factors it is paired
with determines its arithmetic value, which ranges
from 1 to 9. A value of 1 denotes equal significance,
whereas a value of 9 indicates that the row factor is
significantly more significant than the corresponding
column factor (Table 1) (Veisi et al., 2022).

For pairwise comparisons, the suggested methodology
uses an 8 x 8 matrix. The consistency of the pairwise

comparison matrix is then evaluated using a numerical
index known as the consistency ratio (CR). The AHP-
based forest fire risk assessment model has a solid and
reliable foundation for decision-making thanks to this

methodical approach, which permits a thorough
assessment of the relative importance of the various
factors.
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Table 1: Saaty Scale (1980)

Scale Numerical rating Reciprocal
Extremely importance 9 1/9
Very to extremely strongly importance 8 1/8
Very strongly importance 7 1/7
Strongly to very strongly importance 6 1/6
Strongly importance 5 1/5
Moderately to strongly importance 4 1/4
Moderately importance 3 1/3
Equally to moderately importance 2 1/2
Equally importance 1 1

Table 2: Random inconsistency indices
n 3 4 5 6 7 8 9 10
RI 0.58 09 1.12 1.24 1.32 1.41 1.45 1.49

The chosen criteria are arranged hierarchically in
Table 3, which shows the relative significance of the
different parameters. The importance of land use and
land cover in relation to the other parameters indicated
in the columns is highlighted in the top row. The
Analytic Hierarchy Process (AHP) method is then used
to normalise the weights that were obtained from this
hierarchical analysis. A forest fire risk hazard map is
then created by integrating the AHP-integrated model
into a Geographic Information System (GIS), which
aids in efficient decision-making and mitigation
techniques (Stefanidis and Stathis, 2012).

The consistency ratio (CR) is calculated to assess the
judgements' coherence (Wu et. al., 2020). A CR ratio
greater than 0.1 would suggest that the decisions may
be inconsistent and untrustworthy. On the other hand,
total consistency in the decisions is indicated by a CR
value of 0 (Elkhrachy, 2015). Using Egs. (1) and (2),
the consistency index (Cl) is divided by the random
inconsistency index (RI), where CI is the consistency
index, RI is the random inconsistency index, n is the
number of factors (Table 2), and A is the average value
of the consistency vector. This yields the CR.

_al
T RI

CR Eq. (1)
_ @-N)
)

Cl Edq.(2)

where A is the consistency vector's average value and
n is the number of factors (in this study, eight).

In this study, eight factors were examined individually
for hazard area mapping. A thorough evaluation of
each factor's importance and contribution to the overall
forest fire hazard was ensured by the study's use of this
scientific methodology. Accurate mapping and
analysis of the forest fire hazard area are made possible
by this methodological rigour, which provides
important insights for efficient forest fire risk
management and mitigation. After determining the
final weights for each influencing factor, a weighted
linear combination equation (Eq. 3) is used to create
the hazard map.

To ensure the reliability of the analysis, the
Consistency Ratio is computed and found to be 0.07,
falling below the threshold of 0.1. This signifies a
satisfactory level of consistency in the assigned
weights. This rigorous evaluation of consistency
ensures the robustness of the forest fire risk assessment
model based on the Analytic Hierarchy Process
(AHP), providing a scientifically sound basis for forest
fire hazard management and decision-making.

Forest Fire Risk = NDVI x 0.1645 +
Temperature X 0.3498 + Slope x 0.0204 +
Moisture Index x 0.0725 + Elevation X
0.2456 + Aspect x 0.0401 + Wind Speed X

0.0378 + LULC x 0.0693

Eq.(3)
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Table 3: A matrix of pairwise comparisons of eight criteria for AHP

NDVI | Temperature | Slope NI Elevation | Aspect G LULC slc')i;TiaI;TEd
Matrix P P Index P speed Ei P
igenvector

NDVI 1 1/5 8 3 1/3 5 7 4 16.45%
Temperature 5 1 9 5 2 6 7 5 34.98%
Slope 1/8 1/9 1 1/4 1/6 1/4 1/3 1/4 2.04%
Moisture
Index 1/3 1/5 4 1 1/5 3 4 1/2 7.25%
Elevation 3 1/2 6 5 1 6 8 3 24.56%
Aspect 1/5 1/6 4 1/3 1/6 1 1 1/2 4.01%
Wind speed 17 1/7 3 1/4 1/8 1 1 1 3.78%
LULC 1/4 1/5 4 2 1/3 2 1 1 6.93%
4. Results and Discussion climate. It has been observed that as elevation

Topographic and climatic conditions play a significant
role in the ignition and spread of forest fire. The
following sections offer an overview of topographic
and climatic elements, including elevation, slope,
aspect, land use, moisture, temperature, wind speed,
etc., that contribute to forest fires in the study area.

4.1. Elevation:

The Malkangiri district of Odisha exhibits a substantial
elevation variation from the Western side to the
Eastern side, ranging from 400 meters to 1200 meters
(Figure 3). This elevation gradient significantly
influences the local

increases, there is a decreasing trend in forest fires
(Tomar et al., 2021). The elevation factor is
instrumental in regulating a spectrum of topographic,
climatic, and hydrologic parameters that influence the
spread and intensity of forest fires. These parameters
comprise wind speed and direction, temperature,
precipitation, humidity, and runoff. Additionally,
elevation contributes to spatial variations in the spread
of forest fires with respect to vegetation cover and soil
properties. The presence of cooler temperatures and
higher humidity at higher elevations reduces the
likelihood of ignition and the subsequent spread of
fires. Most fire incidents occur at lower and moderate
elevations due to drier conditions (Rothermel, 1983).
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Figure 3: Elevation Map
4.2. Slope: opposed to downhill (Abedi Gheshlaghi, 2019). Upper

It functions as an indicator for the rate of elevation
change (in degrees). Both the speed and direction of
fire propagation are influenced by the slope. Fires
generally advance more rapidly when moving uphill as

slopes had drier fuel compared to lower slopes,
contributing to the fire's propagation (Lamat et al.,
2021). For Malkangiri, the slope ranges from high
values in the hilly areas of the district to lower values
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in the water body areas. The slope map of the study
area revealed varying degrees of incline, classified into

Vol. 19, No. 2, October 2025

four classes: low, moderate, high, and very high
(Figure 4).
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Figure 4: Slope Map
4.3. Aspect: 1996). Conversely, north-facing slopes receive less

The slope of the terrain indicates the direction with the
steepest change in elevation between adjacent cells.
East-facing slopes receive direct sunlight earlier in the
day compared to west-facing slopes, and south-facing
slopes receive more intense direct heat from the sun,
leading to drier vegetation and soil (Chang et al.,

sunshine, influencing the moisture content of flora and
soil. These factors play a significant role in shaping the
microclimates and fire behaviour in different aspect of
the landscape. The Aspect for the study area is shown
in Figure 5.
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Figure 5: Aspect Map
4.4.LULC: to land cover classes, reflecting fuel types and

LULC dynamics, predominantly driven by human
activities, have resulted in significant changes
impacting forests and the environment's ecosystem.
Evaluating fire risk in the study area was closely linked

characteristics. Forest areas, especially very dense,
dense, and open forests, were identified as highly
susceptible to fire incidents, often stemming from
slash-and-burn practices for cultivation (Vetrita &
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Cochrane, 2020). Prudent management and
conservation strategies are imperative to address the
heightened fire risk in these vulnerable ecosystems.
Forest and Agriculture is the two prominent LULC

Vol. 19, No. 2, October 2025

class for the study area. The spatial distribution of the
LULC classes of the study areas is shown in figure 6
and corresponding area statistics is shown in Table 4.

Table 4: Area Statistics of different LULC classes of the study area

LULC Class Area (sg-km)
Forest 3387.92
Water 217.98

Urban Areas 58.13

Agriculture 2152.77
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Figure 6: LULC Map
4.5.NDVI: water content of vegetation (Figure 8). Because of the

NDVI works as an indicator of water stress by
detecting changes in vegetation's reflectance of near
infrared and red wavelengths of light. During water
stress, vegetation experiences reduced transpiration
and increased evaporation, leading to decreased
chlorophyll activity and a decline in NDVI values
(Maselli et al., 2020). Lower NDVI values and higher
water stress scalars indicate areas with drought-
stressed vegetation, making them more susceptible to
fire incidents, thereby assisting in fire danger
assessment and proactive fire management strategies.
Figure 7 displays the NDVI values' spatial distribution
within the study area. The forest's low NDVI values
have led to its reclassification as highly fire-prone.

4.6. NDMI:

The amount of moisture in an area has a significant
impact on the likelihood of forest fires. Thermal band
data from Landsat-8 satellite imagery is used to
calculate the Normalised Difference Moisture Index
(NDMI), which gives important information about the

increased dryness, a declining moisture content in
vegetation suggests a higher risk of forest fires.
Analysis of the NDMI map for the Malkangiri district
showed notable differences between the eastern and
western sides, with the vegetation in the western
section having a noticeably lower moisture content
(Luo et al., 2019). These results highlight how crucial
it is to keep an eye on moisture levels as a crucial
metric for determining the risk of fire and possible fire
incidents in various locations

4.7. Wind Speed:

One of the weather factors that significantly affects
how quickly a fire spreads in any given area is wind
speed. In the study area, wind speeds were generally
low in high elevation ranges and high in low and
moderate elevation ranges (Tomar et al., 2021). In the
current study, the wind speed was higher in the upper
portion of the study area than in the lower portion
(Figure 9)
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4.8. Temperature:

Temperature plays a pivotal role in forest fires,
exerting significant influence on fire behaviour
through its impact on evapotranspiration rates. High
temperatures  facilitate rapid evapotranspiration,
resulting in the seasonal desiccation of fuel materials
like needles, leaves, twigs, and dead vegetation. These
dry conditions create a conducive environment for fire
ignition and propagation (Kumari & Pandey, 2020).

The study area exhibited an average monthly
temperature range of 17 to 32 °C, with elevated
temperatures predominantly observed in the eastern
regions of the district of Malkangiri (Figure 10). The
direct correlation between temperature and fire
outbreak underscores the role of rising temperatures in
augmenting evaporation and transpiration, thereby
desiccating flammable materials and heightening the
risk and potential for forest fires (Tomar et al., 2021).
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Figure 8: NDMI

4.9. Forest fire Risk map:

The research findings reveal a nuanced distribution of
forest fire risk zones in the Malkangiri district of
Odisha, India (Figure 11). The study categorizes the
area into different fire risk zones based on the analysis
of a total area of 5,496.8842 square kilometres. The
greater percentage of the area under study, precisely
40.91%, falls within the very low fire risk zone hence
indicating a lower probability for forest fires. The low
fire risk zone embraces 33.06% of the area hence,
further emphasizing moderate vulnerability levels in
the areas. Some other 13.57% fall within a moderate
risk that speaks volumes concerning some
considerable potentials of such fire activities; this
precarious high fire-risk zone covers 12.45% of the

area and thus calls for immediate attention in strategic
planning through effective forest management to
mitigate such risks. Ideally, a meager portion of about
0.00075% in the real region is considered very high-
risk and contains certain places with particular
inclinations toward more intensive susceptibilities that
have come out herewith; importantly, approximately
only an average quarter part puts itself into middle-
high categories which may be termed as vulnerable
acreage lying under possible future fire incidents.
Understanding the microclimate of these zones is
paramount for effective prediction and the formulation
of sustainable forest management strategies Remote
sensing (RS) and Geographic Information System
(GIS) emerge as indispensable tools in this context,
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providing advanced capabilities to analyze, model, and
monitor environmental factors influencing fire risk.
The integration of RS and GIS techniques enhances the
accuracy of predictive models, aiding in the
identification of wvulnerable areas and facilitating
informed  decision-making for proactive fire
prevention and containment measures. These results
provide a nuanced understanding of the distribution of
fire risk across the Malkangiri district, offering
valuable insights for policymakers, forest management
authorities, and firefighting teams to formulate
targeted strategies for prevention and mitigation. The
validation of forest fire risk zone was verified by the
fire points obtained from the office of Principal Chief
Conservator of Forest (PCCF), Odisha (Figure 12).
The fire was very prone in low to moderate elevation
ranges and most of the fire points overlaid in the map
can be seen as very high-risk zones.

Vol. 19, No. 2, October 2025

Forest fires due to anthropogenic regions have been a
major problem across tropical regions. The final risk
map was categorized into five zones as very high, high,
moderate, low and very low. Although the AHP
demonstrates potential for forest fire risk zonation
using EO data, the integration of machine learning and
other supervised models can offer a more robust
alternative (Goltas et al., 2024; Banerjee, 2024). These
data-driven approaches can enhance fire risk
assessment by capturing complex, nonlinear
relationships among multiple variables, thereby
improving prediction accuracy and spatial mapping of
fire-prone areas. The present study has primarily
focused on environmental attributes; however, given
that forest fires are often profoundly shaped by human
actions, the results could be more informative by
including human-induced elements. The integration of
land use patterns, population density, distance to roads
and settlements, and other human activity indicators
would enhance the evaluation of forest fire risk.
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5. Conclusions

The objective of the work was to create an improved
forest fire risk map based on geospatial and AHP
methods. To analyze the influential factors of forest
fire risk, we adopt geospatial technologies and satellite
data, such as temperature, elevation, NDVI, the
Moisture Index, LULC, wind velocity, slope, and
aspect. A weighting matrix was created to weigh these
factors and the weighted linear combination model was

applied to develop a forest fire risk map. The results
indicated that temperature was the most susceptible
factor in the evaluation of forest fire. The study's forest
fire risk map is extremely beneficial to the Malkangiri
District's forest management and firefighting
operations. These high-risk fire zones can support
strategic plans to prevent forest fires and reduce their
impact. The study also highlights the importance of the
AHP approach for considering a range of
environmental factors in a rational decision-making
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framework, which can improve the accuracy and
objectivity of forest fire risk assessment. AHP's
weighting of different influencing factors is essential
for planning and resource allocation to reduce the risk
of fires, in addition to ranking the most important
causes of fire occurrence.
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