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Abstract: Farm ponds play a crucial role in rainwater harvesting and irrigation, making their accurate detection essential 

for effective water resource management. This study explores the application of deep learning models for detecting farm 

ponds in Kadwanchi village, Maharashtra, where water scarcity challenges agricultural productivity. The Feature 

Classifier emerged as the most accurate model, achieving a perfect precision score of 1.0, a recall of 0.863, and an F1 

score of 0.927, detecting 296 farm ponds. U-Net (Universal Network) also performed well, with an F1 score of 0.873. At 

the same time, Mask R-CNN (Mask Region-based Convolutional Neural Network) and DeepLabV3+ (Deep 

Convolutional Neural Network for Semantic Image Segmentation) showed more moderate results. These findings can 

assist government agencies in making data-driven decisions about water resource management and promoting sustainable 

agriculture in water-scarce regions. Future research could focus on hybrid models and larger datasets to improve farm 

pond detection accuracy. 

 

Keywords: Farm Ponds, Deep Learning, Remote Sensing, Kadwanchi 

 

1. Introduction 

 

The availability and management of water resources play 

a pivotal role in sustaining agricultural productivity, 

particularly in water-scarce, rain-red regions. Farm ponds 

are crucial for capturing and storing rainwater, providing a 

reliable irrigation source for crops during dry periods 

(Reddy et al., 2022). The efficient management of these 

ponds can significantly enhance agricultural resilience, 

reduce water wastage, and improve food security (Kaur et 

al. 2024; Qadir et al., 2003). Efficient management of farm 

ponds also presents challenges in accurately mapping their 

area and volume, which is critical for understanding water 

storage capacity and usage. One major issue is the lack of 

accurate topographical data during farm pond 

construction, leading to incorrect pond volume and surface 

area estimation. Farmers may overestimate the pond's 

storage capacity without precise measurements, affecting 

water management practices (Liu et al., 2024). Another 

challenge is siltation, which reduces the actual volume of 

the pond and makes it difficult to track changes in pond 

capacity over time. Accurate volume estimation requires 

regular surveys and desiltation efforts to maintain the 

designed storage capacity (Straffelini et al, 2021). 

Moreover, inconsistent methodologies for measuring the 

area and volume of farm ponds further complicate 

management efforts. Different approaches to estimating 

pond dimensions, such as manual surveys or satellite-

based mapping, can yield varied results, affecting water 

storage calculations (Béchet, 2018). Finally, the limited 

use of advanced technologies like satellite data, LiDAR, 

and UAVs (Unmanned Aerial Vehicles) for precise 

mapping can further challenge the accurate assessment of 

pond area and volume. Farmers often lack access to such 

technologies, relying on less accurate manual methods 

(Dhillon & Moncur, 2023). 

The National Geospatial Policy (NGP) and Remote 

Sensing Policy of India significantly promote using 

advanced geospatial and satellite technologies for various 

applications such as agriculture, urban planning, and 

disaster management. With increased access to high-

resolution imagery, these developments are driving 

innovation and sustainable growth. In recent years, further 

advancements in deep learning have opened new avenues 

for automating the detection of farm ponds from satellite 

imagery. Deep learning models, such as U-Net, Mask 

RCNN, DeepLabV3+, and Feature Classifier, have shown 

promise in various applications, including image 

segmentation and object detection (Attri et al., 2023; 

Ahmadkhani, 2025). These models leverage convolution 

neural networks (CNNs) to learn intricate patterns from 

data, accurately identifying and classifying various ground 

objects/features (He et al., 2017). Their application in 

agricultural settings can enhance the precision of farm 

pond detection, thus facilitating better management and 

planning of water resources (Kamilaris & Prenafeta-

Boldú, 2018) 

 

This study bridges the gap between conventional 

qualitative methods of assessing farm pond benefits and 

modern technological advancements for precise, 

quantitative measurements. By comparing the 

performance of various deep learning models, this research 

aims to identify the most effective approach for farm pond 

detection, which is essential for optimizing water resource 

management in rainfed regions. 

 

2. Study Area 

 

In the Maharashtra state of India, Kadwanchi hamlet 

(19°53' N latitude and longitude 76°00' E) is situated in the 

Jalna district's Jalna tehsil and falls under the GP 33 

watershed of Godavari Watershed in Maharashtra, India 

(Parab, 2018) (Figure 1). The region is known for its semi-

arid tropical climate with an average temperature of 25℃ 

to 40 ℃, marked by scorching summers with drying 
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winds, dry winters, and annual rainfall of about 700mm to 

800mm. Thus, the region is vulnerable to droughts because 

of the significant year-to-year fluctuation that impacts 

agricultural output and water availability. This village was 

selected for the study because it is renowned for its 

'Kadwanchi Model' of water conservation, which was 

adopted by the local community through farm pond 

construction as a key water conservation strategy. These 

farm ponds were primarily constructed as part of the 

watershed development programs during the 1990s and 

early 2000s, particularly under the Integrated Watershed 

Development Programme (IWDP), a key initiative of the 

Ministry of Rural Development, Government of India, and 

the Drought Prone Areas Programme (DPAP). 

Subsequently, after 2005-06, MGNREGA played a 

significant role in supporting the renovation of these farm 

ponds, mainly through desilting activities (Babu, 2022). 

Most of these farm ponds are relatively large, with 

dimensions of 20x20 meters and a depth of 3 meters, 

designed to meet the water needs for agricultural purposes. 

 

 
Figure 1. Study area location 

 

3. Methodology 

 

3.1. Data Used  

Open access freely available ResourceSat-1 satellite, 

Linear Imaging Self Scanning Sensor (LISS) IV data 

acquired on 27 October 2023; accessible from the Indian 

Space Research Organisation (ISRO) Bhoonidhi portal 

(https://bhoonidhi.nrsc.gov.in/) is the primary data source 

for this study. It offers a spatial resolution of 5.8 meters. It 

comprises three bands (Band 02, Band 03, and Band 04) 

whose Spectral resolutions are 0.52-0.59 µm, 0.62-0.68 

µm, and 0.77-0.86 µm, respectively.  The use of LISS-4 

data for delineating farm ponds in Kadwanchi is justified, 

particularly when considering the Minimum Mapping Unit 

(MMU). With a spatial resolution of 5.8 meters, LISS-4 

data offers a sufficiently high level of detail to accurately 

identify and delineate farm ponds that are typically around 

20 m x20m in size. The MMU refers to the smallest 

mappable area that can be reliably identified, generally 

considered to be about 3×3 pixels for LISS-4, translating 

to approximately 300 m². Given that most farm ponds in 

Kadwanchi are around 400 m² (20m × 20m), they are 

larger than the MMU and thus can be distinctly captured 

and delineated. 

 

3.2. Training Samples 

This study employed an unsupervised classification 

technique using K-means clustering in ERDAS Imagine 

2023 to generate training samples for identifying farm 

ponds. As an unsupervised learning approach, K-means 

clustering proves to be a robust method for generating 

training datasets in remote sensing applications, 

particularly for features like farm ponds. The satellite 

image was initially classified into 36 default clusters, each 

representing a unique spectral signature corresponding to 

various land use/land cover (LULC) categories. Clusters 

associated with water bodies were visually interpreted and 

manually merged to form a single "farm pond" class, while 

the remaining clusters were grouped under a general 

"others" category. By clustering pixels with similar 

spectral properties, the technique simplifies high-

resolution imagery into meaningful segments, enabling the 

detection of water bodies based on their distinct spectral 

signatures. These identified clusters serve as valuable 

positive samples for training deep learning models. The 

method significantly reduces dependency on manually 

labeled data and minimizes the effort required for sample 

preparation, making it both cost-effective and scalable. 

Additionally, K-means enhances the efficiency and 

accuracy of subsequent deep learning-based classification 

tasks by focusing on spectrally relevant regions. Three 

hundred twenty-threeFor further spatial analysis, farm 

ponds were delineated and exported to ArcGIS Pro 3.3. 

 

3.3. Applying Models 

Next, the 'Export Data for Deep Learning' tool exported 

training samples in a format compatible with deep learning 

models such as U-Net and DeepLabV3+. To enhance 

model accuracy and robustness (Mohan et al., 2025), the 

'Label Objects for Deep Learning' technique was 

employed to annotate segmented objects, generating 

additional training datasets systematically. Approximately 

70% of the data was used for training, derived from 

satellite imagery, while the remaining 30% was set aside 

for testing. This division enabled a comprehensive model 

performance evaluation, facilitating accurate farm pond 

detection and mapping across diverse geographic regions. 

Four deep learning models were employed for pixel-level 

segmentation and object classification on satellite imagery 

(Table 1). The first model, U-Net, is a U-shaped 

convolutional neural network with an encoder-decoder 

structure, effective for detailed segmentation tasks. It was 

used with a ResNet-34 backbone, a tile size of 64×64 

pixels, a stride of 32×32 pixels, and trained on 553 images. 

The second model, Mask R-CNN, is an extension of Faster 

R-CNN with an added branch for segmentation mask 

prediction, enabling precise object detection and 

segmentation. It was configured with a ResNet-50 

backbone, a tile size of 128×128 pixels, a stride of 64×64 
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pixels, and trained on 282 images. The third model, 

DeepLabV3+, designed for semantic segmentation, 

integrates an encoder-decoder structure with dilated 

convolutions to enhance boundary accuracy. 

 This model was implemented using a ResNet-34 

backbone, with a tile size of 32×32 pixels, a stride of 

16×16 pixels, and trained on 1,166 images. The final 

model, Feature Classifier, is a CNN-based model that 

classifies features within satellite images into predefined 

categories. It utilized a ResNet-34 backbone, a tile size of 

128×128 pixels, a stride of 64×64 pixels, and was trained 

on 325 images. The reason behind using different window 

sizes is that the same window size across different models 

gave significant variations in accuracy, indicating sub-

optimal performance. This variability suggested that the 

window size alone could not capture the necessary spatial 

context or details for accurate farm pond detection. The 

model-specific window size was obtained by iteratively 

identifying the optimal size, which allowed striking a 

balance between capturing detailed features (like the shape 

and size of the ponds) and the surrounding context (such 

as vegetation and field boundaries). This adjustment 

helped improve model performance, and within the best 

performing window sizes, we could determine which 

model outperformed the others for the specific objective of 

detecting farm ponds. Thus, each model was chosen and 

configured based on its strengths to address specific 

requirements of high-resolution remote sensing 

applications. The training was conducted over 20 epochs, 

with a validation loss of 30%, indicating an optimized 

balance between learning and generalization for all four 

models. 

The final step involved the accuracy evaluation, which was 

performed using the ‘Compute Accuracy for Object 

Detection’ tool in ArcGIS Pro, which calculated key 

performance metrics, including Precision, Recall, and the 

F1 Score (Sholahuddin et al., 2023). These metrics 

collectively provided a robust assessment of the model’s 

performance, ensuring reliable and accurate classification 

of objects within the dataset. 

 

 Recall = 
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃)

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃)+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 (𝐹𝑁)
 

Recall measures the model's ability to identify all 

relevant instances (positive cases) correctly. 

 Precision = 
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃)

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃)+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝐹𝑃)
 

Precision measures how many of the predicted 

positive cases were correct. 

 F1 score = 2 X 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑋 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 

 

It is useful when Precision and Recall are equally essential 

or when there is a need for a balanced measure. 

4. Results 

 

The results of the performance evaluation of the deep 

learning models, with a focus on training-validation loss 

trends and the accuracy of farm pond detection, assessed 

through comparisons between ground truth data and model 

predictions in the study area, are as follows: 

 

4.1. U-NETMODEL 

 The application of the U-Net model in our study shows 

significant decreases in the training loss with each batch, 

indicating that the model is improving its predictions 

(Figure 2). Similarly, the validation loss, which starts lower 

than the training loss, gradually decreases over time and 

levels off. The close alignment of the training and 

validation loss curves suggests that the model does not 

overfit but generalizes well to unseen data. Both loss curves 

flatten at nearly the same point, demonstrating that the 

model has reached an optimal balance between learning 

from the training set (Srinivasulu et al., 2025) and retaining 

its ability to generalize to new data. The U-Net model 

achieved a final precision of 0.955, confirming its high 

accuracy in detecting and segmenting farm ponds in the 

study area. The comparison of ground truth and model 

projections for farm ponds in the study area highlights the 

model’s ability to accurately detect and locate farm ponds 

using satellite imagery (Figure 3) 

 

4.2. MASK R-CNN MODEL 

The comparison of the model's projections for farm ponds 

in the Kadwanchi region with the ground truth is shown in 

Figure 4. The training and validation loss of the MASK R-

CNN model as a function of batch processing shows 

relatively high losses in the initial stages of training, both 

due to fine-tuning of the model's parameters (Figure 5). 

Although the validation loss begins at a lower value than 

the training loss, it also decreases quickly, likely due to the 

model's initial state or the validation data's characteristics. 

Both losses decline as training progresses but eventually 

flatten out when the model performs optimally. By 400 

batches, the training and validation losses stabilized, 

indicating that the model has achieved a balance. The close 

alignment of the two-loss curves demonstrates that the 

model was well-trained, with good learning in the early 

stages and no signs of overfitting. It also confirms the 

model's ability to generalize effectively. The close 

agreement between the predicted results and the ground 

truth confirms the algorithm's ability to reliably detect 

farm ponds in their proper locations. Finally, the model 

achieved an accuracy of 0.932, highlighting its high 

predictive capability and readiness for practical 

application.  

 

Table 1. Details of the Model parameters  

Model Metadata Backbone Tile size 

(Pixels) 

Stride Size Images 

U-Net Classified Tiles ResNet34 64x64 32x32 553 

MaskRCNN RCNN Masks ResNet50 128x128 64x64 282 

DeepLabV3+ Classified Tiles ResNet34 32x32 16x16 1166 

Feature Classifier Multi-labeled Tiles ResNet34 128×128 64×64 325 
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Figure 2. U-Net Model Training and Validation Loss Graph 

 
A B 

Ground Truth Prediction Ground Truth Prediction 

  
C D 

Ground Truth Prediction Ground Truth Prediction 

  
 

Figure 3. Ground Truth/Predictions of the U-Net Model 

 

 
 

Figure 4. Mask R-CNN Model Training and Validation Loss Graph 
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A B 

Ground Truth Prediction Ground Truth Prediction 

  
C D 

Ground Truth Prediction Ground Truth Prediction 

  
 

Figure 5. Ground Truth/Predictions of Mask RCNN Mode 

 

4.3. DEEPLABV3+ MODEL 

The training and validation loss curves for the 

DeepLabV3+ model are shown in Figure 6. In the initial 

stages of training, both the training (blue curve) and 

validation (orange curve) sets exhibit higher loss values. 

The training loss drops sharply as the model learns to 

reduce errors in the training set. However, the higher 

validation loss suggests the model initially struggles to 

generalize to unseen data (Leon, 2024). Around the 200th 

batch, the curves converge, indicating that the model has 

stabilized. While the validation loss fluctuates less than the 

training loss, hinting at possible overfitting, this effect is 

minimal. Notably, there is a slight increase in validation 

loss around the 1,000th batch, but it remains low, and there 

is no clear evidence of significant overfitting. Overall, the 

loss curves demonstrate that the model is well-trained, 

though there is potential for further optimization through 

regularization or early stopping techniques to achieve even 

better results. Figure 7 provides a comparative analysis of 

the model's predictions and the ground truth for farm 

ponds in the Kadwanchi region. The strong alignment 

between the predicted results and the ground truth (Yin et 

al., 2025) confirms that the algorithm can reliably detect 

farm ponds at their actual locations with high precision. 

The final precision achieved by the model was 0.939. 

 

Table 2 show an overall comparison of different models in 

detecting the farm ponds in terms of visualization and the 

values of farm pond detection using different models as 

applied in the Kadwanchi. 

 

4.4. FEATURE CLASSIFIER MODEL 

The training and validation loss of the Feature Classifier 

model are presented in Figure 8. The x-axis represents the 

number of batches, while the y-axis shows the loss values. 

The blue line, representing the training loss, starts above 

1.0 and steadily decreases as training progresses, 

indicating that the model is successfully learning and 

improving its performance on the training set. The 

validation loss, represented by the orange line, is initially 

very high and exhibits frequent oscillations during the 

early stages of training. These oscillations suggest 

instability in the model's performance on the validation 

dataset at the beginning. However, the validation loss 

drops sharply later and stabilizes at values close to zero, 

reflecting improved generalization on unseen data. The 

overall loss curves demonstrate that the model is training 

effectively, with both training and validation losses 

decreasing and converging over time. This behavior 

reflects error minimization and potential improvements in 

the model's feature classification accuracy. The final 

accuracy of 1.0 suggests that the model performs 

exceptionally well for real-world applications. Figure 9 

compares the model's predictions with the ground truth of 

farm ponds in the Kadwanchi region, highlighting the 

model's strong capability in accurately identifying farm 

ponds.  

 

Table 2. Model Accuracy 

 

Model Precision Recall 
F1 

Score 

Farm 

Ponds 

detected 

U-Net 0.955 0.805 0.873 269 

Mask RCNN 0.932 0.625 0.749 207 

DeepLabV3+ 0.939 0.700 0.801 228 

Feature 

Classifier 
1.0 0.863 0.927 296 
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Figure 6. DeepLabV3+Model Training and Validation Loss Graph 

 

A B 

Ground Truth Prediction Ground Truth Prediction 

  
C D 

Ground Truth Prediction Ground Truth Prediction 

  

 

Figure 7. Ground Truth/Predictions of DeepLabV3+ Model 

 

 
 

Figure 8. Feature Classifier Model Training and Validation Loss Graph 
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A B 

Ground Truth Prediction Ground Truth Prediction 

  
C D 

Ground Truth Prediction Ground Truth Prediction 

  

 

Figure 9. Ground Truth/Predictions of Feature Classifier Model 

 

4.5. Model Validation 

 

Table 3 presents the Confusion Matrix summarizing the 

performance of four models: u-Net, Mask RCNN, 

DeepLabV3+, and a Feature Classifier for detecting farm 

ponds using satellite imagery. The Feature Classifier 

showed the highest accuracy, with 296 farm ponds 

detected and a true positive (TP) count 279. It achieved 

perfect precision by avoiding false positives (FP = 0) and 

showed the lowest false negative (FN) value of 44, 

indicating its superior ability to identify farm ponds with 

minimal errors. U-Net identified 269 farm ponds, with a 

high true positive count of 257 and a relatively low FP of 

12. However, its FN value of 63 highlights some missed 

detections. Mask RCNN detected the fewest farm ponds 

(207), with 193 true positives but the highest FN value of 

121, reflecting a significant under-detection issue. 

DeepLabV3+ achieved a balanced performance with 228 

detections, 214 true positives, and an FN value of 97, 

showing moderate effectiveness compared to the other 

models. 

 

Figure 10 shows the Confusion Matrix of the four models- 

U-Net, Mask RCNN, DeepLabV3+, and Feature 

Classifier. Although the feature classification had the 

highest performance, U-Net and DeepLabV3+ presented a 

trade-off between precision and recall. At the same time, 

Mask RCNN showed a problem regarding sensitivity 

when detecting farm ponds. This means that the feature 

classifier would be the best model for detecting farm ponds 

for this study.  

 

5. Discussions 

 

Farm ponds are crucial in agricultural water management, 

particularly in regions of water scarcity. Their detection 

and monitoring are essential for effective irrigation 

planning and resource management, as they contribute 

significantly to optimizing water usage and enhancing 

crop productivity. With advances in satellite technology, 

detecting farm ponds from aerial imagery has become 

increasingly feasible. Satellite data provides a 

comprehensive view of the landscape, allowing for the 

identification of small water bodies like farm ponds that 

traditional ground surveys might miss. In this context, 

various deep learning models have been employed to 

enhance the accuracy of farm pond detection.  We found 

that the Feature Classifier is the most effective model, 

achieving a perfect precision score of 1.0, a recall of 0.863, 

and an impressive F1 score of 0.927. 

 

 
 

Figure 10: Farm Ponds Detection Using Different Models 

- Comparative Visualization 
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Figure 11: Confusion Matrix of the Models Used 

 

Table 3. Confusion matrix comparison of farm pond 

detection models 

Model 

Farm 

Ponds 

Detected 

True 

Positive 

False 

Positive 

False 

Negative 

U-Net 269 257 12 63 

Mask 

RCNN 
207 193 14 121 

DeepLab

V3+ 
228 214 14 97 

Feature 

Classifier 
296 279 0 44 

 

This exceptional performance demonstrates the model's 

ability to accurately identify nearly all relevant farm pond 

instances while avoiding false positives. Such accuracy is 

vital for agricultural stakeholders who rely on precise 

assessments of water resources for effective irrigation 

planning and management (Kamilaris, A., & Prenafeta-

Boldú, 2018). Accurately identifying farm ponds allows 

farmers to optimize water usage, which is especially 

crucial in Maharashtra, where water scarcity significantly 

affects crop yields and livelihoods. 

 

In contrast, the U-Net model also demonstrated robust 

performance, with a precision of 0.955 and a recall of 

0.805, yielding an F1 score of 0.873. U-Net's performance 

highlights its strength in semantic segmentation tasks, as 

evidenced by its successful detection of 269 farm ponds.  

Previous studies have reported similar observations 

emphasizing the model's efficiency in delineating 

agricultural features from complex landscapes 

(Ronneberger et al., 2015). However, the U-Net model 

exhibited some limitations regarding missed detections, 

indicating that while it can capture a majority of ponds, it 

may not be as reliable in densely populated areas or where 

pond features are less distinct. 

 

Conversely, the Mask RCNN model, despite achieving a 

commendable precision of 0.932, recorded a low recall of 

0.625, resulting in an F1 score of 0.749. This disparity 

suggests that while Mask RCNN can accurately identify 

some farm ponds, it fails to capture many actual instances, 

which may lead to underreporting of available water 

resources (He et al., 2017). The challenges faced by Mask 

RCNN in detecting farm ponds may stem from the intricate 

features of satellite imagery in agricultural landscapes, 

which require sophisticated feature extraction capabilities. 

This observation is consistent with the findings of 

(Kamilaris & Prenafeta-Boldú, 2018), who noted that 

instance segmentation models can struggle with complex 

agricultural environments.  

 

DeepLabV3+ offered a relatively balanced performance 

with a precision of 0.939 and a recall of 0.700, resulting in 

an F1 score of 0.801. This model detected 228 farm ponds, 

indicating its suitability for specific applications; however, 

its performance was not as strong as that of the Feature 

Classifier and U-Net models. The balanced metrics 

suggest that DeepLabV3+ could serve as a middle ground 

for applications requiring a trade-off between precision 

and recall (Chen et al., 2017). While it can effectively 

detect farm ponds, its limitations in capturing finer details 

in complex regions might hinder its utility in high-

precision scenarios. 

 

6. Conclusion 

Deep learning methods applied to remote sensing data 

have significantly enhanced the ability to detect and 

monitor changes across large numbers of small water 

bodies, such as farm ponds, with high speed and 

consistency. These methods enable scalable, cost-

effective, and timely assessments, which would be 

impractical through field surveys alone. Deep learning 

algorithms offer standardized analysis across vast 

landscapes and facilitate historical change detection using 

satellite archives. However, remote sensing–based 

detection complements rather than replaces field 

investigation. Ground truth validation remains essential to 

ensure the accuracy of remote observations, especially in 

heterogeneous and dynamic environments where sensor 

limitations or classification errors can occur. Thus, an 

integrated approach combining deep learning-based 

remote sensing with strategic field verification provides 

the most reliable pathway for monitoring and managing 

farm ponds over time. 
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