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Abstract: Accurate prediction of habitat suitability is crucial for species of conservation importance. Predictive 

distribution models play a key role in conservation by identifying current and future suitable habitats. Cullenia exarillata 

A. Robyns is an endemic and keystone tree species of the tropical wet evergreen forests of the Western Ghats of India. 

This study used a species distribution model to predict the current and future distribution of C. exarillata. Various 

environmental variables and the MaxEnt model were used to assess the current potential distribution and shifts within 

different shared socio-economic pathways. The findings illustrate the potential reduction of the species ecological niche 

in certain landscapes of Karnataka, Kerala and Tamil Nadu under future climate change scenarios. The receiver operating 

characteristic area under the curve was used to evaluate the accuracy of the model. The Jackknife test was used to assess 

the significance of environmental factors. This study highlights the importance of targeted conservation and habitat 

management strategies for the conservation of C. exarillata. This spatial approach can be applied to other species facing 

similar threats, making it an essential tool for broader conservation efforts. 
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1. Introduction 

 

Climate change has emerged as one of the most critical 

global challenges with profound implications for 

biodiversity and ecosystem services. Increasing 

concentrations of greenhouse gases, primarily due to 

human activity, have led to significant changes in global 

climate patterns. These changes include rising 

temperatures, altered precipitation patterns, and increases 

in the frequency and intensity of extreme weather events 

(IPCC, 2014). Such climate shifts cause widespread 

disruption of ecosystems, affecting species distribution, 

phenology and interactions (Thomas et al. 2017; Lang et 

al. 2024). Species have a limited ability to adapt to these 

rapid environmental changes, leading to shifts in their 

geographic ranges, population declines, and even 

extinction (Bellard et al. 2012). Understanding and 

predicting the impact of climate change on species 

distributions is critical to developing effective 

conservation strategies and mitigating biodiversity loss. 

Species distribution models (SDMs) have become 

indispensable tools in ecology and conservation biology 

for predicting the potential distribution of species in a 

landscape under current and future environmental 

conditions (Malik et al. 2022; Namitha et al. 2022). These 

models use occurrence data along with environmental 

variables to predict suitable habitats for species (Elith & 

Leathwick, 2009). SDMs are particularly valuable for 

identifying areas that are critical for conservation. 

Different modeling techniques such as maximum entropy 

(MaxEnt), generalized linear models (GLM) and random 

forests (RF) are used to build these predictive models 

(Elith et al. 2011). The accuracy of SDM depends on the 

quality of the input data and the selection of appropriate 

modeling techniques and environmental variables. SDMs 

are powerful tools for understanding species-environment 

relationships and for guiding conservation efforts in the 

face of climate change. Integrating climate change 

projections with species distribution models offers a robust 

framework for predicting future impacts of climate change 

on biodiversity. By integrating these methodologies, 

researchers can identify likely shifts in species' ranges and 

prioritize conservation efforts. Consistent with Thomas et 

al. (2017) and Saraf et al. (2024) climate change is 

predicted to cause significant range reductions and shifts 

in many species, requiring proactive conservation 

planning. This information is essential for designing 

protected areas, restoring degraded habitats, and 

implementing assisted migration or ex-situ conservation 

programs. 

 

There are challenges in implementing SDM in the context 

of climate change. Significant challenges include the 

complexity of relationships between species and their 

environments, uncertainties in climate projections, and 

limitations of species occurrence data (Araújo & Peterson, 

2012). However, advances in machine learning-based 

modeling techniques and the increasing availability of 

high-resolution environmental data are increasing the 

predictive power of SDM (Franklin, 2013). Integrating 

climate change research and species distribution modeling 

provides a powerful toolkit for addressing 21st century 
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conservation challenges. Cullenia exarillata A. Robyns 

(Malvaceae) is an endemic and keystone species in the 

mid-elevation (between 400-1600 m) tropical wet 

evergreen forests of the central and southern Western 

Ghats, India. Cullenia exarillata has most recently been 

assessed for The IUCN Red List of Threatened Species in 

2023 under Near Threatened status 

(https://www.iucnredlist.org/). The tree is known for its 

height (up to 40 m tall), massive canopy structure and 

unusual fruit and flowers that attract a variety of wildlife, 

including fruit-eating bats and arboreal mammals. Its 

cauliflorous flowering pattern has been identified as a 

significantadaptation for pollination. The flowers produce 

abundant nectar and are easily accessible for arboreal 

pollinators like bats and squirrels. It flowers between 

December and March, while its fruiting season occurs 

from March to July. It plays a key role in maintaining the 

structure and function of these ecosystems (Ganesh & 

Davidar, 2001). As a canopy dominant, it often co-occurs 

with other canopy species such as Mesua ferrea L. and 

Palaquium ellipticum (Dalzell) Baill., forming the 

Cullenia exarillata – Mesua ferrea – Palaquium ellipticum 

type of mid-elevation wet evergreen forests. Pascal et al. 

(2004) have identified a Cullenia exarillata - Mesua ferrea 

- Palaqium ellipticum – Gluta travancorica Bedd. 

(CMPG) type, confined to south of the Ariankavu Pass and 

defined by the altitudinal preference of C. exarillata. This 

specific type is limited to the Agasthyamala and 

Mahendragiri regions in the southern Western Ghats 

situated between latitudes 8° 20′N and 8° 50′N. At the 

canopy and subcanopy levels, major associated tree 

species include Atuna travancorica, Diospyros barberi, 

Garcinia travancorica, Garcinia rubro-echinata, Nageia 

wallichiana and Calophyllum austroindicum. 

Furthermore, species including Octotropis travancorica, 

Goniothalamus rhyncantherus, Vernonia travancorica, 

Popowia beddomeana, Memecylon gracile, and 

Memecylon subramanii are found at the undergrowth 

level. C. exarillata provides habitat and resources for a 

diverse array of organisms, making it a keystone species. 

The loss of C. exarillata could significantly reduce 

biodiversity in the forest, as it supports not only arboreal 

mammals but also other taxa, including plants and insects. 

Its distinct trunk, bark, and branch structure create niches 

in the forest that other species do not possess. It is 

harboured by many species of epiphytes such as Eria, 

Peperomia and Bulbophyllum (Devy, 2006). The majority 

of the trees range in height from 15 to 30 m. This large 

canopy tree provides essential resources, such as nectar 

and fruits, for a variety of fauna, including birds, 

mammals, and insects (Devy & Davidar, 2003).C. 

exarillata is the high-priority food species for lion-tailed 

macaque and Nilgiri langur which are endangered and 

endemic species. The seed dispersal is mainly through 

these frugivores, Malabar giant squirrels and bats (KFRI, 

2016; Newport, 2022). The conservation of C. exarillata 

is critical for the overall health of the wet evergreen forest 

ecosystem. Therefore, utilizing SDM to predict the future 

distribution of C. exarillata under various climate 

scenarios can provide valuable insights for developing 

effective conservation strategies. 

 

 

2. Study area 

 

The Western Ghats, a UNESCO World Heritage site, is a 

mountain range that runs parallel to the western coast of 

India, stretching across six states (Figure 1). It receives the 

heaviest rainfall during the south-west monsoon period, 

June to September. The Western Ghats is recognized as 

one of the world's biodiversity hotspots, hosting a high 

level of endemism and species richness (Myers et al., 

2000). However, the region is under significant threat from 

deforestation, habitat fragmentation, and climate change 

(Raman et al., 2010; Satish et al. 2014; Dutta et al. 2016; 

Reddy et al. 2016). The southern Western Ghats have the 

highest overlap of irreplaceable forest landscapes with 

vulnerability (Reddy et al. 2018).  

 

3. Methodology 

 

The methodology involves integrating species occurrence 

data with environmental variables using machine learning 

algorithm to predict suitable habitats.  

 

3.1. Species Distribution Data 

The geographic distribution data for C. exarillata in the 

Western Ghats were obtained from multiple sources (Roy 

et al. 2012; Vattakaven et al. 2016; Reddy et al. 2021). The 

latitude and longitude coordinates of the species from the 

collected samples were extracted and organized into a .csv 

file. To enhance the precision of our analysis, we identified 

and eliminated any duplicated distribution points within 

the dataset. This refinement process resulted in a final 

dataset comprising 254 unique distribution points for C. 

exarillata. 

 

 
Figure. 1. Location map showing occurrence locations 

of  C. exarillata in Western Ghats 

 

3.2. Environmental variables 
The present work made use of the WorldClim dataset, 

which offers an extensive collection of climate data for 

ecological and environmental research (Fick & Hijmans, 

2017; https://www.worldclim.org).The current data on 19 
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bioclimatic variables at a 1 km spatial resolution was used 

to determine the potential distribution of the C. exarillata 

(Table 1). The Coupled Model Intercomparison Project 

Phase 6 (CMIP6) is a major international effort to provide 

a comprehensive set of climate model simulations that help 

researchers understand and predict climate change. Future 

environmental variables in this study were derived from 

the HadGEM3-GC31-LL climate model, part of the 

Hadley Centre Global Environment Model series 

developed by the UK Met Office (Andrews et al. 2019). 

HadGEM3-GC31-LL is recognized for its high-resolution 

simulations of atmospheric, oceanic, and terrestrial 

processes, offering critical insights into climate change 

impacts. The study analyzed specific scenarios under the 

shared socioeconomic pathways SSP-2 4.5 and SSP-5 8.5, 

which represent different greenhouse gas concentration 

trajectories. SSP-2 4.5 assumes moderate mitigation 

efforts, leading to intermediate greenhouse gas levels, 

while SSP585 represents a high-emission scenario with 

minimal mitigation. These scenarios were examined for 

two future periods: 2041–2060 (centered on 2050) and 

2061–2080 (centered on 2070). By incorporating 

HadGEM3-GC31-LL within WorldClim, the study utilizes 

detailed climate projections to assess potential 

environmental changes and their impacts over the coming 

decades. 

 

3.3. Data analysis 

MaxEnt is a machine-learning method used for species 

distribution modeling, which estimates the probability 

distribution of a species' presence based on environmental 

constraints while making the fewest assumptions about the 

unknown factors (Phillips, 2005). It is particularly 

effective for predicting species distributions with limited 

occurrence data and has become a widely used tool in 

ecological niche modeling (Elith et al. 2011). The 19 

selected environmental variables and species occurrence 

records of C. exarillata were loaded into MaxEnt. Of the 

254 species occurrence locations, 70% were randomly 

chosen as testing data to create the prediction model, and 

the remaining 30% were used to validate the model's 

accuracy. The experiment was conducted using a total of 

five replicates to ensure sufficient data for statistical 

analysis and to enhance the reliability of the results.  

 

The model was evaluated by computing the Area Under 

the Curve (AUC) of the receiver operating characteristic 

(ROC) plot. The "cloglog" (cumulative log-log) link 

function was used to relate the linear predictor (a 

combination of the input features) to the probability of the 

outcome. The AUC is a metric for determining how well a 

model can distinguish between two distinct classes, such 

as presence and absence, with values ranging from 0 to 1. 

A perfect model has an AUC of 1, meaning it can perfectly 

discriminate between the classes (Fielding and Bell, 1997). 

The AUC is particularly effective because it doesn't 

depend on any specific threshold for classification, making 

it a useful tool for evaluating model performance. AUC 

scores can be categorized: a score below 0.5 indicates a 

model worse than random guessing, while scores are 

classified as failing (0.5 to 0.6), bad (0.6 to 0.7), reasonable 

(0.7 to 0.8), good (0.8 to 0.9), and excellent (0.9 to 1) 

(Swets, 1988). 

 

 

Table 1 List of bioclimatic variables 

Variable Variable name and Unit Temporal Scale 

Bio 1 Annual Mean Temperature (0C) Annual 

Bio 2 Mean Diurnal Range (0C) Variation 

Bio 3 Isothermality (Bio2/Bio7) (*100) Variation 

Bio 4 Temperature Seasonality (SD*100) Variation 

Bio 5 Maximum Temperature of the Warmest Month (0C) Month 

Bio 6 Minimum Temperature of the Coldest Month (0C) Month 

Bio 7 Temperature Annual Range (0C) (Bio5-Bio6) Annual 

Bio 8 Mean Temperature of Wettest Quarter (0C) Quarter 

Bio 9 Mean Temperature of Driest Quarter (0C) Quarter 

Bio 10 Mean Temperature of Warmest Quarter (0C) Quarter 

Bio 11 Mean Temperature of Coldest Quarter (0C) Quarter 

Bio 12 Annual Precipitation (mm) Annual 

Bio 13 Precipitation of Wettest Month (mm) Month 

Bio 14 Precipitation of Driest Month (mm) Month 

Bio 15 Precipitation Seasonality (Coefficient Variation) (%) Variation 

Bio 16 Precipitation of Wettest Quarter (mm) Quarter 

Bio 17 Precipitation of Driest Quarter (mm) Quarter 

Bio 18 Precipitation of Warmest Quarter (mm) Quarter 

Bio 19 Precipitation of Coldest Quarter (mm) Quarter 
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A Jackknife test was used to determine the relative 

importance of each variable on the distribution of this 

species in terms of percent contribution to the overall 

model fit (Yang & Zhao, 2013). Permutation importance 

was used to provide a straightforward interpretation of 

how much a variable contributes to the model’s predictive 

performance by directly measuring the impact on 

performance metrics. To identify potential habitat changes 

from current to future data, we used a matrix model and 

image differencing techniques, applying a threshold to 

detect significant changes. 

 

4. Results and Discussion 

 

The current and future distribution areas of C. exarillata 

were predicted using the MaxEnt model (Figure 2). It 

shows high and moderate suitable habitats in central and 

southern Western Ghats of Karnataka (Kodagu district), 

Kerala and Tamil Nadu. The AUC value for the MaxEnt 

models was 0.978 (Figure 3), which signifies that the 

model's predictive performance is "excellent," indicating 

that the MaxEnt model is highly reliable for estimating the 

potential geographical distribution of C. exarillata in the 

Western Ghats. It is absent in the north of Brahmagiri 

Wildlife Sanctuary of central Western Ghats of Karnataka. 

Under the present climatic conditions, the species is 

predominantly found in habitats characterized by tropical 

wet evergreen forests, with the most favourable habitats 

located in the Anamalais (Anamalai Tiger Reserve), 

Periyar Tiger Reserve (Periyar National Park), Silent 

Valley National Park, Aralam wildlife sanctuary, 

Chimmony wildlife sanctuary, Kottiyoor wildlife 

sanctuary, Parambikulam tiger reserve, Agasthyamalai 

hills (Agasthyamala biosphere reserve) and Kanyakumari 

wildlife sanctuary. Among the non-protected areas, it was 

distributed mostly in Mannarkkad Division, Wayanad 

South Division, Nilambur North Division, and Nilambur 

South Division, of Kerala. This suggests that these areas 

provide optimal environmental conditions for the survival 

of C. exarillata. 

 

 
Figure 2. Habitat suitability maps of C. exarillata 

 

 
Figure 3. The averaged receiver operating 

characteristic (ROC) curve for  C. exarillata (Mean 

(AUC = 0.978)) 

 

4.1. Contribution of each variable to the MaxEnt 

prediction model 

The key environmental factors impacting the potential 

distribution of C. exarillata were identified based on their 

contributions to the modeling process, as assessed by the 

jackknife test (Figure 4). The test revealed that Annual 

mean temperature (24.8%), precipitation of driest quarter 

(Bio17 – 23.4%), precipitation during the driest month 

(Bio14 – 20.5%), precipitation of wettest month (Bio13 – 

7.4%), and mean diurnal range (Bio2 – 5.8%) were the 

most significant contributors. The jackknife test identified 

the optimal value ranges for these environmental variables, 

which may indicate the correlation between the probability 

of presence and these factors. A probability of presence 

above 0.5 generally suggests that the environmental 

conditions are more favourable to species growth.  

 

 
Figure 4. Jackknife test of regularized training gain for 

C. exarillata 

 

4.2. Potential habitat changes of C. exarillata under 

future climate scenarios 

The results, which are represented in the maps highlight 

the substantial influence that future climate change is 

anticipated to have on the ecological niche of C. exarillata. 

The potential habitat change maps are generated in terms 

of contraction, expansion, and persistence of the species 

(Figure 5). Contraction refers to the reduction in the habitat 

area of species as a result of climate change. Contraction 

is mostly represented in the Western Ghats of Karnataka, 
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followed by Tamil Nadu and Kerala. Expansion describes 

the increase in the habitat area where a species can be 

found. Persistence refers to the continued presence of a 

species in its current habitat over time. Persistent potential 

habitats are found in Silent Valley, Anamalais, 

Parambikulam and Periyar region. Habitat fragmentation 

and changes in mammal populations can impact the 

success of this species in new habitats, emphasizing the 

importance of conservation strategies that support both 

tree species and their dispersers. 

 

 
Figure 5. Future prediction maps of C. exarillata in 

climate change scenario showing change in potential 

distribution 

 

The model shows a slight increase in total potential habitat 

areas in the future period 2041-2060 under the SSP2-4.5 

scenario for C. exarillata. In the period 2061-2080, based 

on the SSP2-4.5 scenario, the area of total suitable habitat 

showed a decrease. Under the more extreme SSP5-8.5 

scenario for the period 2061-2080, the situation is even 

more significant. Key drivers of habitat reduction include 

rising temperatures and altered rainfall patterns. The 

current mean annual temperature of 20–22 °C in most 

habitats of this species is expected to increase to around 

25–26 °C in 2061–2080 under the SSP5-8.5 scenario. This 

significant decrease of habitat emphasizes how severely 

high-emission pathways affect C. exarillata niches. 

Overall findings of this study suggest that C. exarillata 

habitat expansion will be negatively affected by future 

climate change.  

 

5. Conclusion 

 

This study highlights the critical need for conservation 

strategies that are both adaptive and forward-thinking, 

capable of addressing the dynamic and evolving nature of 

environmental challenges. As ecosystems face increasing 

pressures from climate change, habitat fragmentation, and 

human activities, it is essential to design conservation 

plans that are flexible and proactive rather than reactive. 

The long-term survival of C. exarillata will depend on 

implementing a multi-faceted approach. Regular 

assessment of C. exarillata populations, their habitats, and 

associated ecological dynamics will provide up-to-date 

data on species trends, habitat conditions, and emerging 

threats. This information is crucial for making timely 

adjustments to conservation actions. Beyond focusing 

solely on C. exarillata, it is crucial to protect the broader 

ecosystem, including the species that contribute to seed 

dispersal, pollination, and overall ecological balance. This 

holistic approach will ensure the sustainability of habitats 

and the species that depend on them. 

 

References 

Andrews T. et al. (2019). Forcings, feedbacks, and climate 

sensitivity in HadGEM3-GC3.1 and UKESM1. J.Adv. 

Model. Earth Syst. 11, 4377-4394.  

Araújo M. B. and A. T. Peterson (2012). Uses and misuses 

of bioclimatic envelope modeling. Ecology, 93(7), 1527-

1539. 

Bellard C., C.  Bertelsmeier, P. Leadley, W. Thuiller and 

F. Courchamp (2012). Impacts of climate change on the 

future of biodiversity. Ecol. Lett., 15(4), 365-377. 

Devy M. S. and P. Davidar (2003). Pollination systems of 

trees in Kakachi, a mid-elevation wet evergreen forest in 

Western Ghats, India. Am. J. Bot, 90(4), 650-657. 

Devy M. S. (2006). Effects of fragmentation on a keystone 

tree species in the rainforest of Kalakad-Mundanthurai 

Tiger Reserve, India. Technical Report. Ashoka Trust for 

Research in Ecology and the Environment, Bangalore. 

Dutta K., C. S. Reddy, S. Sharma and C. S. Jha (2016). 

Quantification and monitoring of forest cover changes in 

Agasthyamalai Biosphere Reserve, Western Ghats, India 

(1920-2012). Curr. Sci. 110(4), 508-520. 

Elith J., and J. R. Leathwick (2009). Species distribution 

models: Ecological explanation and prediction across 

space and time. Annu. Rev. Ecol. Evol. Syst., 40, 677-697. 

Elith J., S. J. Phillips, T. Hastie, M. Dudík, Y. E. Chee and 

C. J. Yates (2011). A statistical explanation of MaxEnt for 

ecologists. Divers. Distrib., 17(1), 43-57. 

Fielding A. H. and J. F. Bell (1997). A review of methods 

for the assessment of prediction errors in conservation 

presence/absence models. Environ Conserv. 24(1), 38-49. 

106



Journal of Geomatics      Vol. 19, No. 1, April 2025 

 

Fick S.E. and R. J. Hijmans (2017). WorldClim 2: New 1-

km spatial resolution climate surfaces for global land 

areas. Int. J. Climatol. 37(12), 4302-4315.  

Franklin J. (2013). Species distribution models in 

conservation biogeography: Developments and 

challenges. Divers. Distrib., 19(10), 1217-1223. 

Ganesh T. and P. Davidar (2001). Dispersal modes of tree 

species in the wet forests of southern Western Ghats. Curr. 

Sci. 80(3), 394-399. 

IPCC (2014). Climate Change 2014: Synthesis Report. 

Contribution of Working Groups I, II, and III to the Fifth 

Assessment Report of the Intergovernmental Panel on 

Climate Change. IPCC, Geneva, Switzerland, 151 pp. 

KFRI (2016). Seed ecological and regeneration studies on 

keystone tree species of the evergreen and moist deciduous 

forest ecosystems. Technical Report. Kerala Forest 

Research Institute, Peechi. ISSN 0970-8103. 

Lang W., Y. Zhang, X. Li, F. Meng, Q. Liu, K. Wang and 

S. Piao (2024). Phenological divergence between plants 

and animals under climate change. Nat. Ecol. & Evol., 1-

12. 

Malik K., K. R. L. Saranya, C. S. Reddy and A. O. 

Varghese (2022). Predicting the habitat suitability of 

Dipterocarpus indicus – An endemic and endangered 

species in the Western Ghats, India. Spat. Inf. Res, 30 (5), 

617-632. 

Myers N. et al. (2000). Biodiversity hotspots for 

conservation priorities. Nature, 403(6772), 853-858. 

Namitha L. H., A. L. Achu, C. S. Reddy and S. Beevy 

(2022). Ecological modelling for the conservation of Gluta 

travancorica Bedd. - An endemic tree species of southern 

Western Ghats, India. Ecol. Inform., 71, 101823. 

Newport K. (2022). Dispersal of Seeds by Frugivores in 

the foothills of Keeriparai Forest Eco System of 

Kanyakumari District, Tamil Nadu. ScienceOpen 

Preprints. 

Pascal J. P., B. R. Ramesh and D. D. Franceschi, (2004). 

Wet evergreen forest types of the southern Western Ghats, 

India. Trop. Ecol., 45(2), 281-292. 

Phillips Steven J. (2005). A brief tutorial on Maxent. At&t 

Research, 190.4: 231-259. 

Raman T. R. S., G. S. Rawat and A. J. T. Johnsingh (2010). 

Consequences of long-term habitat fragmentation on trees 

and their regeneration dynamics in tropical rainforests of 

the Western Ghats, India. Conserv. Biol., 24(3), 1089-

1098. 

Reddy C. S., C. S. Jha and V. K. Dadhwal (2016). 

Assessment and monitoring of long-term forest cover 

changes (1920-2013) in Western Ghats biodiversity 

hotspot. J. Earth Syst. Sci. 125(1), 103-114. 

Reddy C. S., C. S. Jha and V. K. Dadhwal (2018). Earth 

Observations based conservation prioritization in Western 

Ghats, India. J. Geol. Soc. India 92(5), 562–567. 

Reddy C. S., A. Jospeh, G. A. Abraham and M. M. Sabu 

(2021). Patterns of animal and plant discoveries, 

distribution and endemism in India - Implications on 

effectiveness of the protected area network. Environ. 

Monit. Assess. 193, 62. 

Roy P. S., S. P. S. Kushwaha, M. S. R. Murthy, A. Roy, D. 

Kushwaha, C. S. Reddy, M. D. Behera, H. Padalia, V. B. 

Mathur, S. Singh, C. S. Jha and M. C. Porwal (2012). 

Biodiversity Characterisation at Landscape Level: 

National Assessment. Indian Institute of Remote Sensing, 

Dehra Dun. pp 1-254. ISBN 81-901418-8-0. 

Saraf P. N., J. Srivastava, F. Munoz, B. Charles and P. 

Samal (2024). How can dry tropical forests respond to 

climate change? Predictions for key Non-Timber Forest 

Product species show different trends in 

India. Environmental Monitoring and Assessment, 196(8), 

727. 

Satish K. V., K. R. L. Saranya, C. S. Reddy, P.  

Harikrishna, C. S. Jha and P. V. V. Prasada Rao (2014). 

Geospatial assessment and monitoring of historical forest 

cover changes in Nilgiri Biosphere Reserve, Western 

Ghats, India (1920-2012). Environ. Monit. Assess. 

186(12), 8125-8140. 

Swets J. A. (1988). Measuring the accuracy of diagnostic 

systems. Science, 240, 1285-1293. 

Thomas, C. D. et al. (2017). Climatologies at high 

resolution for the earth’s land surface areas. Sci. Data, 

4(1), 170122.  

Vattakaven T., R. George, D. Balasubramanian, M. Réjou-

Méchain, G. Muthusankar, B. Ramesh and R. Prabhakar 

(2016) India Biodiversity Portal: An integrated, interactive 

and participatory biodiversity informatics platform. 

Biodivers. Data J 4: 

e10279. https://doi.org/10.3897/BDJ.4.e10279. 

Yang H. and Y. Zhao (2013). Smoothed jackknife 

empirical likelihood inference for the difference of ROC 

curves. J. Multivar. Anal., 115, 270-284. 

https://www.iucnredlist.org/. 

https://www.worldclim.org/. 

 

107

https://www.worldclim.org/



