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Abstract: In congested urban environments, accurate detection and counting of humans and vehicles provide valuable 

insights for optimizing traffic flow, identifying congestion hotspots, and designing efficient transportation systems. By 

leveraging computer vision algorithms, such as deep learning based object detection models, real-time monitoring of 

pedestrian and vehicular traffic can be achieved with high accuracy and granularity. The ability to precisely quantify 

pedestrian and vehicle movements enables urban planners and policymakers to make data-driven decisions regarding 

infrastructure development, road maintenance, and public transit planning. In this work, we enhanced the existing deep 

learning based network architecture for object detection using UAV images. The proposed work enhances the super-

resolution pipeline, which contributes to the overall performance improvement of the object detection model. The 

enhanced network architecture can detect and give a count of the number of objects for any particular area in the image.  
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1 Introduction 
 

Detecting objects in images captured by Unmanned Aerial 

Vehicles (UAVs) using deep learning methods has become 

a crucial research focus, with wide-ranging applications 

such as monitoring, emergency response, and 

infrastructure analysis. Convolutional neural networks 

(CNNs), a subset of deep learning models, have proven 

highly effective in recognizing and locating objects in 

UAV imagery by leveraging patterns learned from large, 

annotated datasets. These models excel in distinguishing 

objects within complex environments, despite challenges 

like varying lighting conditions. A significant hurdle in 

this area is the limited availability of labeled datasets for 

training. UAVs, also known as drones, are remotely 

controlled or can operate autonomously via pre-

programmed flight paths. Equipped with advanced sensors 

like high-resolution cameras and LiDAR, they capture 

detailed aerial imagery, which provides valuable spatial 

data for object detection. The rapid development of UAV 

technologies has led to increasing interest in object 

detection from aerial perspectives, which this paper 

explores in depth. In this work we enhanced the existing 

object detection method to effectively detect small objects  

using aerial inputs. We also curated a drone image dataset 

for object detection task which can be shared for future 

research. The improved object detection model can be used 

to identify aerial objects with smaller sizes in occluded 

environments precisely. It is crucial for applications like 

autonomous drones and disaster management, where it 

effectively handles challenges such as scale variability and 

cluttered backgrounds. 

 

2 Literature Review 
 

In (Zhang et al. 2023), the author introduces SuperYOLO, 

an efficient and precise object detection method that 

integrates multimodal data. It performs detection across 

multiple objects using assisted Super Resolution (SR) 

learning, optimizing both object detection accuracy and 

computational efficiency. In (Papageorgiou et al. 1998), 

the author introduces a novel framework for object 

detection in complex scenes, this method uses a 

comprehensive set of basic functions along with 

techniques from statistical learning. In (Pathak et al. 2018), 

the author examines the use of CNN-based deep learning 

methods for object detection, providing an overview of 

available frameworks, benchmark datasets, and key 

applications. Additionally, a comparison of state-of-the-art 

deep learning approaches is presented. Surveys deep 

learning-based techniques for object detection and 

tracking in UAV-acquired data, while (Zhou et al. 2022) 

introduces FasterX, a lightweight detector for UAV 

imagery. The PixSF head, proposed within this 

framework, includes a position encoder-decoder to 

enhance small object detection by incorporating positional 

embedding in the head layer. In (Mittal et al. 2020), a 

review of Deep Learning (DL) based object detection 

algorithms focuses on UAV datasets at low-level altitudes, 

which are less studied than standard datasets. The study 

compares two-stage detectors like faster region 

convolutional neural networks and Cascade region 

convolutional neural networks with one-stage models such 

as YOLO and Single Shot MultiBox Detector (SSD) and 

also explores advanced detectors like CornerNet. The 

analysis highlights research gaps, particularly in 

improving detection accuracy and performance for UAV 

applications. In (Zhang et al. 2020), the author introduces 

a multi-task symmetric network, which integrates a model 

using dilated convolutions to enhance detection 

performance, especially in dense scenes. Tested on 

VisDrone and UAVDT datasets, GDF-Net can be applied 

to other object detection models to improve recall and 

precision. In (Liu et al. 2020), the author proposes a Multi-

branch Parallel Feature Pyramid Network (MPFPN) aimed 

at improving small object detection in UAV images. 

MPFPN recovers features lost in deeper layers and applies 

a supervised spatial attention module (SSAM) to reduce 

background interference. A downward architecture is 

utilized in the faster region convolutional neural network 

stage to improve localization accuracy, and experiments 

on the VisDrone-DET dataset demonstrate competitive 
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performance against state-of-the-art models. In (Albaba et 

al. 2021), the author introduces SyNet, an ensemble 

network that combines both multi-stage and single-stage 

detection approaches to minimize false negatives and 

enhance detection quality. SyNet integrates CenterNet and 

Cascade R-CNN, leveraging pretrained feature extractors 

and an ensemble strategy to improve object detection 

performance by capitalizing on the advantages of both 

detection methods. In (Bejiga et al. 2016), the author 

presents a technique to support search and rescue (SAR) 

operations using UAVs equipped with smart cameras. The 

UAV captures images of debris-avalanche, which are 

processed by a pretrained CNN for feature extraction, 

followed by a linear SVM classifier to distinguish objects 

of interest. This method increases the efficiency of SAR 

missions. In (Xiao et al. 2020), a method is proposed for 

detecting arbitrary-oriented and densely packed objects in 

UAV images. Evaluated on DOTA, VEDAI, and 

VisDrone datasets, the method enhances multiscale feature 

extraction and employs a rotating region network to 

capture distinctive features effectively. In (Li et al. 2023), 

the author introduces an improved version of YOLOv5, 

called YOLOv5-VTO, designed to enhance the detection 

of obscured and small vehicles in aerial imagery. This 

model adds a detection branch for small targets, replaces 

PAN with BiFPN for better multiscale feature fusion, and 

incorporates Soft-NMS to improve detection under 

occlusion. Experiments demonstrate that YOLOv5-VTO 

surpasses the original YOLOv5s. In (Liu et al. 2020), the 

author presents an automated deep learning (DL) method 

utilizing Faster-RCNN to detect and count oil palm trees 

from UAV drone imagery. By cropping and sampling 

images into sub-images, the model was trained to 

accurately locate individual trees, achieving high detection 

accuracy. In (Hosseinpoor et al. 2020), the study 

introduces a modified UNet encoder-decoder model for 

building extraction from high-resolution remote sensing 

data. By integrating ResNet-101 into the encoder and 

applying embedded feature fusion in the decoder, the 

model enhances segmentation accuracy, as demonstrated 

on a publicly available urban scene dataset. In (Aswini et 

al. 2021), a deep learning approach for frontal object 

detection using monocular drone camera images is 

proposed, comparing three pre-trained neural networks 

based on speed and accuracy. In (Meng et al. 2020), an 

approach consisting of UAV remote-sensing with deep 

learning for the detection of ground excavators is 

introduced, resulting in the UAV-ED system, which 

includes modules for UAV control, detection, geolocation, 

and real-time information transfer. In (Zhang et al. 2020), 

a system combining ultramicro oblique and infrared 

thermal imaging is proposed for detecting structural 

damage and cracks in buildings post-disaster. By 

constructing 3D remote sensing images and analyzing 2D 

plane images, the system extracts structural information 

while infrared thermal images help detect temperature 

anomalies, enabling rapid post-disaster damage 

assessment. In (Zhang et al. 2020), the Global Density 

Fused Convolutional Network (GDF-Net) is proposed for 

object detection in UAV images, optimized for high-

density object scenarios. The model integrates a Global 

Density Model (GDM) using dilated convolutions, 

improving recall and precision, especially in congested 

scenes, and has been tested on VisDrone and UAVDT 

datasets. In (Maharjan et al. 2022), an automatic method 

for mapping plastic waste in rivers using UAVs and deep 

learning models is proposed. YOLOv5s, tested at two sites 

in Laos and Thailand, performed best, achieving a high 

mean Average Precision (mAP) for plastic detection. In 

(Micheal et al. 2022), a deep learning-based framework for 

accurate multi-object tracking in UAV videos is 

introduced. The system uses a tiny object detector for 

detection and an LSTM-based network tracker for 

tracking, reducing identity switching and improving 

performance over existing methods. In (Bazi et al. 2018), 

a novel Convolutional Support Vector Machine (CSVM) 

network is introduced, combining convolutional layers 

with SVMs for feature extraction and classification. Using 

forward supervised learning instead of backpropagation, 

the method shows promising results for vehicle and solar 

panel detection in UAV imagery. In (Wu et al. 2021), a 

CNN-based modeling method for single object detection 

on UAVs is proposed, without using transfer learning. An 

inducing neural network is included to accelerate training 

convergence, enabling the model to select and distinguish 

specific objects within the same category. In (Sun et al. 

2022), an algorithm based on YOLOv3 is proposed. It 

improves the accuracy of detection by leveraging shallow 

feature maps for location prediction, fusing local and 

global features in a Feature Pyramid Network (FPN), 

adaptively weighting FPN outputs, and refining the 

Squeeze-and-Excitation attention mechanism for precise 

feature response adjustments.In (Zeng et al. 2023), the 

author introduces YOLOv7-UAV, a real-time small object 

detection algorithm optimized for UAV aerial imagery. 

Key improvements include the removal of the second 

downsampling layer, the introduction of module for 

enhanced multi-scale feature extraction, optimized anchor 

allocation through binary K-means clustering, and the use 

of weighted Gaussian Wasserstein distance for sample 

assignment. These modifications boost detection speed, 

increase mean Average Precision (mAP) compared to 

YOLOv7, and reduce model complexity. In (Saetchnikov 

et al. 2021), the author presents a comparative study of 

deep neural networks for detecting objects with similar 

patterns, using limited pre-trained datasets. In (Wu et al. 

2022), the author introduces the Cross Channel 

Reconstruction (CCR) module for remote sensing image 

classification. CCR enables the features from different 

modalities extracted by the CNN to be fused more 

compactly. This approach often results in improved 

classification performance compared to traditional fusion 

methods based on concatenation or alignment. In (Wu et 

al. 2023), UIU-Net was proposed for infrared small object 

detection, combining a small U-Net within a larger 

backbone for multi-scale feature learning, with RM-DS 

and IC-A modules enhancing contrast. In (Li et al. 2023), 

LRR-Net introduced a deep learning-based hyperspectral 

anomaly detector, integrating trainable low-rank 

representation to improve scalability and reduce manual 

tuning. 

 

3 Dataset 
 

Creating a high-quality dataset is a critical step in the 

object detection pipeline, as the model's performance and 
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accuracy largely depend on the dataset. This phase is 

essential for evaluating and improving various algorithms. 

The advent of large-scale datasets, featuring millions of 

images, has been instrumental in achieving significant 

advancements in object detection capabilities.  

 

 

NESAC dataset: We utilized a drone to capture UAV 

images at a resolution of 4000 x 3000 pixels. These images 

were primarily taken from urban areas in the Meghalaya 

and Assam regions of North-East India. Although we 

aimed to collect a larger dataset, we limited the scope to 

the images we could acquire. To optimize the training 

process, we resized the images to a resolution of 400 x 300 

pixels, which helped reduce training time. We also 

manually filtered out images that lacked any identifiable 

objects, leaving us with a final dataset of 10,000 image 

patches. The dataset was preprocessed and structured 

using Python to align with standard model architectures. 

We also used the VEDAI (Razakarivony et al. 2016)  and 

VASAI (Wang et al. 2022) benchmark dataset for fair 

comparison. 

 

4 Method Used 
 

4.1 Enhanced Super-YOLO 
In figure 1, the block diagram of our modified Enhanced 

Super-YOLO is shown. It consists of a Backbone for 

feature information and extraction, a Detector to calculate 

bounding box and regression loss, and a Super Resolution 

pipeline to recreate the original input. We enhanced the 

existing Super-YOLO (Zhang et al. 2023) with 

improvement in the super-resolution pipeline which used 

EDSR network (Lim et al. 2017). Densely Residual 

Laplacian Network (DRLN) (Anwar et al. 2022) based 

network is used to improve the performance of super-

resolution pipeline which further improves the feature 

representation of the backbone. Path Aggregation Network 

(PANet) for fast image segmentation and Feature Pyramid 

Networks (FPN) for generic feature extraction are utilized 

 

 
Figure 1. Enhanced Super-YOLO framework 

 

4.2 Loss Function 
In object detection, the loss function combines localization 

loss (e.g., Smooth L1, GIoU, CIoU) to assess bounding 

box accuracy and classification loss (e.g., Cross-Entropy, 

Focal Loss) to evaluate object classification, with Focal 

Loss addressing the class imbalance. By optimizing these 

combined loss functions, the model improves its ability to 

detect objects more accurately, both in terms of their 

positions and classifications. The overall loss of our 

network comprises of two components: the detection loss 

Lo and super resolution reconstruction loss Ls represented 

as: 

 Ltotal = c1Lo + c2Ls 

In this framework, c1 and c2 serve as coefficients that 

balance the two training tasks. For calculating the super 

resolution reconstruction loss Ls is defined as the 

difference between input image X and the super-

resolved output S, we utilize L1 loss instead of L2 loss. 

This is expressed mathematically as: 

  

  Ls = ∥S − X∥1  

Detection loss consists of three key components: the 

loss associated with object presence Lobj, the loss related 

to object localization Lloc, and the loss for object 

classification Lcls. The overall detection loss Lo can be 

represented as follows: 

 

Lo = λloc∑ +2
𝑙=0 alLloc + λobj∑ +2

𝑙=0  alLloc + λcls∑ +2
𝑙=0  

c1Lcls 

In this equation, l denotes the output layer in the network's 

head, while al, bl, and cl represent the weights assigned to 

the different layers for each of the three loss functions. The 

weights λloc, λobj, and λcls help regulate the emphasis placed 

on errors related to bounding box coordinates, dimensions, 

object presence, absence, and classification accuracy.  

In figure 2, observations at lower altitudes, the images 

exhibited a more detailed and intimate view of the 

landscape. Fine textures and small-scale features were 

prominently visible, providing a closer connection to the 

subject matter.  

 

  
Figure 2. Low Height Fly 

 

In figure 3, observations at medium altitude flights struck 

a balance between detail and overall landscape 

composition. The images captured from this height 

showcased a broader perspective while retaining sufficient 

detail, making it an ideal choice for a variety of 

applications.  
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Figure 3. Medium Height Fly 

 

In figure 4, observations at high-altitude flights revealed a 

sweeping, panoramic view of the landscape. While details 

at the ground level were less pronounced, the images 

captured from this height provided a unique and 

comprehensive overview of the area, highlighting large-

scale patterns and topographical feature 

 

 
    Figure 4: High Height Fly 

 

5 Results  

 

In figure 5, From left to right, each column represents: [a] 

ground truth and predicted results [b] SuperYOLO, [c] 

ShuffleNet, [d] YOLOrs, and [e] Our model. Vehicles are 

accurately detected in the second and fourth input rows, 

while missed detections occur in the first input [c], third 

input [c], fifth input [c], and the last inputs [b] & [c]. 

Person detection is largely missed across most inputs, but 

overall, vehicles and persons are accurately detected in [e].  

In figure 6, From left to right, each column represents: [a] 

ground truth, predicted results [b] SuperYOLO, [c] 

ShuffleNet, [d] YOLOrs, and [e] Our model. Vehicles, 

such as cars and pickups, are accurately detected in the 

third and sixth input rows, with missed detections 

occurring in the first input [c] and [d], as well as the fifth 

input [a]. Overall, vehicles like cars and pickups, along 

with other classes, are accurately detected in [e]. 

 

 
       (a)               (b)             (c)                 (d)               (e) 

Figure 5. Predicted results of the proposed model on 

UAV dataset. Detections labeled with green rectangles 

are persons and those with orange rectangles are 

vehicle. 
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       (a)              (b)               (c)             (d)             (e) 

Figure 7. Comparison results of various models on 

VEDAI IR  (Razakarivony et al. 2016) dataset.

 

In figure. 7, From left to right, each column represents: [a] 

ground truth,  predicted results, [b] SuperYOLO, [c] 

ShuffleNet, [d] YOLOrs, and [e] Our model. In fifth row 

vehicles, such as cars and truck, are accurately detected in 

[d][e] and missed on [b][c]. In forth row, truck is detected 

only on [e] and missed on all other. Overall, vehicles like 

cars and pickups, along with other classes, are accurately 

detected in [e]. figure. 8, presents the visual outcomes of 

our model applied to various scenes and respective ground 

truth from the VSAI (Wang et al. 2022) dataset. It can able 

to detect small and large vehicles captured using drones 

precisely. 

 

 
(a)  Ground truth 

 
(b)  Our model results 

Figure 8. Visualization result produced by Our 

method on VSAI (Wang et al. 2022) dataset 

 

6 Accuracy & Analysis 
 

The accuracy assessment evaluates the alignment between 

detection results and the reference mask, using precision, 

recall, and mean Average Precision (mAP) as key metrics, 

where precision measures the proportion of true positive 

detections among all positive detections. 

Precision and Recall are calculated as, 

Precision =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 & Recall = 

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

True Positives (TP) refer to objects that are correctly 

identified, whereas False Positives (FP) denote incorrectly 

identified objects. False Negatives (FN) indicate objects 

that were not detected. Precision and recall together offer 

insights into detection accuracy, contributing to the mean 

Average Precision (mAP) for overall model performance 

across classes and thresholds. 
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mean Average Precision = 
𝐴𝑃

𝑁
 = 

∫
1

0 𝑝(𝑟)𝑑𝑟

𝑁
 

Here, P is precision, r is recall, and N the number of 

categories. 

In table 1, we observe the performance of our model across 

various classes on the VEDAI RGB dataset (Razakarivony 

et al. 2016). The overall results indicate strong 

performance in detecting common vehicle types like cars 

and pickups, while less common categories such as boats 

and vans show comparatively lower metrics  

In table 2, we observe a comparison of our model's 

performance with other models on the VEDAI RGB 

dataset (Razakarivony et al. 2016). Our model here 

demonstrates a balanced performance across all metrics, 

surpassing SuperYOLO (Zhang et al. 2023) and 

ShuffleNet (Zhang et al. 2018) in mAP@50 and achieving 

higher overall precision compared to YOLOrs (Sharma et 

al. 2021) and ShuffleNet (Zhang et al. 2018). 

In table 3, we observe a comparison of our model's 

performance with other models on the VEDAI IR dataset 

(Razakarivony et al. 2016). The car class has the highest 

precision and mAP, indicating strong performance. 

However, the van class shows significantly low recall, 

suggesting poor detection consistency for that category. 

In table 4, we observe a comparison of our model's 

performance with other models on the NESAC dataset. 

Our model here outperforms SuperYOLO (Zhang et al. 

2023), ShuffleNet (Zhang et al. 2018), and YOLOrs 

(Sharma et al. 2021) in all metrics, demonstrating higher 

precision and recall, as well as better mAP, indicating 

more accurate detection and classification on the NESAC 

dataset. 

 

 

Table 1. Classwise Precision (P), Recall (R), and Mean 

Average Precision (mAP) for Our model on the VEDAI 

(Razakarivony et al. 2016)  RGB dataset 

Class  Ima

ges 

Lab

els 

P R mAP

@50 

mAP

@5:9

5 

all 121 364 72.37 67.33 74.84 45.11 

car 121 134 86.18 82.09 89.56 58.23 

pickup 121 95 79.74 78.73 84.37 55.52 

campin

g 

121 39 63.61 76.22 65.87 45.55 

truck 121 30 83.0 70.0 83.52 50.85 

other 121 20 61.33 50.00 65.47 29.80 

tractor 121 19 86.31 78.95 87.48 44.15 

boat 121 17 68.94 52.94 60.15 35.58 

van 121 10 49.82 49.68 62.26 41.20 

 

Table 2. Comparison of SuperYOLO, ShuffleNet, and 

YOLOrs with Our model on the VEDAI RGB dataset 

Model P R mAP@

50 

mAP@5:9

5 

Our 72.37 67.33 74.84 45.11 

Super

YOLO 

79.21 57.19 69.00 40.51 

Shuffle

Net 

68.29 58.92 64.4 37.58 

YOLO

rs 

55.56 58.25 57.51 33.67 

 

Table 3.  Classwise Precision (P), Recall (R), and Mean 

Average Precision (mAP) for Our model on the VEDAI  

IR dataset 

Class  Imag

es 

Label

s 

P R mAP@

50 

mAP@

5:95 

all 121 364 63.67 51.21 56.83 34.22 

car 121 134 91.92 67.94 83.01 53.45 

pickup 121 95 69.43 68.42 75.31 46.94 

campin

g 

121 39 63.36 58.97 64.65 41.31 

truck 121 30 56.65 56.67 51.08 30.09 

other 121 20 57.92 25 31.56 12.69 

tractor 121 19 54.35 47.37 43.87 20.55 

boat 121 17 58.7 35.29 43.15 27.07 

van 121 10 57.04 5 61.97 41.65 

 

Table 4.  Comparison of SuperYOLO, ShuffleNet, and 

YOLOrs with Our model on the NESAC dataset 

Model P R mAP@50 

Our 61.06 56.11 61.06 

SuperYOLO 59.92 55.22 56.31 

ShuffleNet 56.21 51.24 53.56 

YOLOrs 54.43 50.15 51.87 

 

7 Conclusion 

 

Real-time applications have witnessed a significant 

transformation due to deep learning-based object 

detection. In sectors like autonomous vehicles, 

surveillance, and medical imaging, these models play a 

crucial role in enabling real-time decision-making. The 
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ability to process information quickly and accurately is 

vital for ensuring the safety and efficiency of systems 

relying on object detection. We showcased the application 

of an enhanced object detection algorithm for aerial object 

detection. As research continues, addressing challenges 

and refining methodologies, the future  holds promise for 

even more sophisticated, interpretable, and efficient deep 

learning models in object detection. 
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