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Abstract: Accurate and precise estimations of Land Surface Temperature (LST) are essential in climatology, 

agribusiness, agronomy, urban planning, aviation, and hydrology studies. In this study, the feasibility of two soft 

computing methods, namely, fifteen different Artificial Neural Network (ANN) architectures and the data mining model 

of Multivariate Adaptive Regression Splines (MARS), is evaluated for predicting the monthly mean LST of Aowin 

District, Ghana. Various weather prediction variables, including precipitation, relative humidity, wind speed, and 

temperature time series historical data spanning 37 years (from 1st January 1985 to 31st December 2022), were used. The 

data was obtained from a satellite database repository and used in formulating the ANN and MARS models as input 

(independent variables) and output (dependent variable), respectively. Five different statistical performance indicators, 

namely mean error (ME), root mean absolute error (RMAE), mean squared error (MSE), root mean squared error (RMSE), 

and standard deviation (SD), were used to assess the accuracy and precision of LST estimates from both the ANN and 

MARS models for the research area. The results demonstrate the capability of both techniques in predicting the monthly 

mean LST. However, the MARS model produced the best LST estimate, with statistical metrics of ME, RMAE, MSE, 

RMSE, and SD being 1.8705E-07 °C, 0.0004 °C, 3.3449 °C, 5.7835 °C, and 1.6000E-09 °C, respectively. Both ANN and 

MARS methods can be effectively applied for LST estimation in the research region and for studying the potential impacts 

of climate change dynamics globally. 
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1. Introduction 

 
Climate change is a worldwide phenomenon that impacts 

many daily life (Gupta et al., 2022; Cassie et al., 2004; 

Sreehari & Ghantasala, 2019). Consequently, climate 

studies have become essential in fields such as disaster 

management, agribusiness, maritime, and aerial 

navigation, hydroelectric power operations, entertainment 

events, and domestic activities (Gupta et al., 2022). 

Moreover, climatic data is crucial for production and 

operational planning at the district, regional, and national 

levels, especially for heating systems (Fang & Lahdelma, 

2016). Weather characteristics, including temperature, 

relative humidity, wind speed, wind power, solar radiation, 

and precipitation, have been essential subjects of study in 

recent decades. Conventional approaches, such as linear 

regression models (Azari et al., 2022; Fang & Lahdelma, 

2016; Dominiak & Terray, 2005; Szymanowski et al., 

2013), non-homogeneous regression (Lerch & 

Thorarinsdottir, 2013), Numerical Weather Prediction 

models (Soman et al., 2010), and autoregressive integrated 

moving average techniques (Fang & Lahdelma, 2016; 

Santamaria-Bonfil et al., 2015; Soman et al., 2010; 

Mohandes et al., 1998), have been employed in 

meteorological forecasting. These models often 

overestimate low values and underestimate high values 

due to non-linearity and non-parametric connections, 

resulting in suboptimal decision-making. Advancements 

in science, technology, and computational capabilities 

have positioned machine learning (ML) approaches as 

effective instruments for weather forecasting, addressing 

non-linearity and non-parametric challenges (Gupta et al., 

2022). Artificial Intelligence (AI) has demonstrated 

efficacy as a data analysis instrument for accurately 

forecasting meteorological conditions with minimum 

human involvement (Zarinkamar & Mayorga, 2021). 

Research indicates that machine learning approaches 

frequently surpass conventional statistical methods in 

predictive accuracy (Radhika & Shashi, 2009).  

 

Artificial Neural Networks (ANN), a technology based on 

artificial intelligence, are very proficient in managing 

uncertainties related to real-world issues and provide 

resilient solutions (Asenso-Gyambibi et al., 2024; Yakubu 

et al., 2018; Cadenas & Rivera, 2009). Artificial Neural 

Networks (ANN) are straightforward to construct across 

several domains and regularly produce superior accuracy 

compared to conventional methods (Radhika & Shashi, 

2009; Asenso-Gyambibi et al., 2024; Yakubu et al., 2018). 

Recent research indicates that artificial neural networks 

(ANN) have achieved significant success in modelling 

time series data of meteorological parameters (Azad et al., 

2014; Mohandes et al., 1998; Cadenas & Rivera, 2009; 

Soman et al., 2010; Ghorbani et al., 2015).  

 

Multivariate Adaptive Regression Splines (MARS) is an 

adaptive supervised machine learning modelling approach 

developed by Friedman in 1991 to handle non-linear 
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connections (Yakubu et al., 2018). MARS is very 

proficient in high-dimensional issues and has shown 

significant potential in modelling non-linear multivariate 

functions (Sumi et al., 2012). It proficiently forecasts both 

additive and interactive effects of predictors on response 

variables and has been effectively utilized in domains such 

as ozone concentration estimation (Roy et al., 2018), sea 

level prediction (Raj & Gharineiat, 2021), temperature 

forecasting (Diaz et al., 2020), atmospheric correction 

modelling (Kuter et al., 2015), and various other 

environmental and meteorological applications.  

 

This research presents novel methods for forecasting land 

surface temperature utilizing monthly weather prediction 

factors (precipitation, relative humidity, temperature, wind 

velocity) derived from historical data in the Aowin 

District, Ghana. The used ANN algorithms comprise 

Bayesian Regularization Backpropagation (BRBPANN), 

Levenberg-Marquardt Backpropagation (LMBPANN), 

Broyden-Fletcher-Goldfarb-Shanno Quasi-Newton 

Backpropagation (BFGSQNBPANN), Scaled Conjugate 

Gradient Backpropagation (SCGBPANN), among others. 

Furthermore, unsupervised artificial neural network 

methodologies such as Radial Basis Function Artificial 

Neural Network (RBFANN) and Generalized Regression 

Artificial Neural Network (GRANN) were utilized.  

 

The MARS data mining model was utilized as well. The 

efficacy of the LST forecasting models was assessed 

utilizing five statistical metrics: ME, RMAE, MSE, RMSE, 

and SD. These models can assist several sectors, including 

agriculture, climatology, energy production, and aviation. 

Furthermore, they provide essential instruments for 

policymakers, engineers, and environmental groups to 

forecast land surface temperature across diverse 

geographical areas with climate change.  

 

2 Study Area 

 

The Aowin Municipal District is situated in the western 

region of Ghana, especially in the midwestern area of the 

Western Region (Figure 1), positioned between latitudes 

5° 25’ N and 6° 14’ N, and longitudes 2° 30’ W and 3° 05’ 

W (Ehiakpor et al., 2016; Aowin Suaman District 

Assembly, 2006). The district is bordered to the south by 

Jomoro District, to the east by Wasa Amenfi, to the north 

by Juabeso-Bia and Sefwi-Wiawso, and to the west by the 

Republic of Côte d'Ivoire (Ilona, 2024; Aowin Suaman 

District Assembly, 2006; Asafo-Adjei & Buabeng, 2016). 

The land area encompasses around 2,717 square 

kilometers, representing 11% of the region's overall size of 

23,921 square kilometers (Ghana Statistical Service, 2010; 

Asafo-Adjei & Buabeng, 2016). The principal settlements 

in the district are Enchi and Dadieso, with Enchi 

designated as the district capital (Ehiakpor et al., 2016; 

Ghana Statistical Service, 2010). Aowin Municipality 

possesses a varied topography, with over 50% of its total 

territory above 305 meters in elevation above sea level. 

The elevations surpass 366 meters, and these highlands, 

located east of Enchi, exhibit a north-northwest to south-

southwest orientation (Ghana Districts, 2017; Ilona, 2024). 

The district receives nine months of precipitation, with a 

peak in May and June. The yearly average precipitation 

varies from 1,500 mm to 1,800 mm, while temperatures 

oscillate between 28°C and 37°C (Ehiakpor et al., 2016). 

February and March are the warmest months, whilst 

August experiences the lowest temperatures. Relative 

humidity often remains elevated, fluctuating between 75% 

and 80% during the wet season, and declining to around 

70% for the remainder of the year (Ilona, 2024).  

 

The district's effective drainage system improves soil 

fertility, facilitating the cultivation of both food and cash 

crops (Ehiakpor et al., 2016). Aowin Municipality is 

located in the forest zone and has two types of vegetation: 

tropical rainforest and semi-deciduous forest. The tropical 

rainforest predominates the landscape, encompassing 

nearly the entire municipality, whereas the semi-deciduous 

forest is confined to a small area in the northeastern region, 

adjacent to the Sefwi Akontombra District and Sefwi-

Wiawso Municipality (Ghana Districts, 2017; Aowin 

Suaman District Assembly, 2006). The district comprises 

eight forest reserves: Tano Anwia, Tano Nimire, Tano 

Ehuro, Boin Tano, Jema Assemkrom, Boi River, Disue 

River, and Yoyo. The predominant tree species in these 

reserves are emire, sapele, wawa, odum, mahogany, 

ofram, and asanfena. The district has substantial 

precipitation year-round, with a rainy season extending 

around eight months each year (Asafo-Adjei & Buabeng, 

2016; Ghana Statistical Service, 2010).  

 

The study region has a population of 192,527, reflecting a 

growth rate of 4.7%. The region has 312 communities, 

with the elevated growth rate ascribed to migrant farmers 

from various regions of the country moving to the district 

to pursue agricultural prospects (Ghana Statistical Service, 

2010). Approximately 78% of the economically active 

population consists of farmers involved in forestry and 

fishing activities (Ghana Districts, 2017). Cocoa 

production constitutes the principal economic activity, 

with 65–70% of the district's vegetative cover allocated to 

cocoa plantations (Ghana Statistical Service, 2010; 

Ehiakpor et al., 2016). Besides cocoa, the district's primary 

income crops are oil palm, rubber, citrus, and small-scale 

coffee cultivation. Prominent food crops cultivated 

encompass plantain, cassava, cocoyam, vegetables, rice, 

yam, and maize (Aowin Suaman District Assembly, 2006). 

The district's geology includes Upper Birimian, 

hornblende, and a composite formation of both sorts 

(Ghana Districts, 2017). The Upper Birimian strata, being 

younger, exhibit significant folding, with dips frequently 

exceeding 60°, resulting in the creation of hill ranges 

(Aowin Suaman District Assembly, 2006). 
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Figure 1. Map of the Study Area 

 

3 Resources and Methods Used  

 

3.1 Resources Used  

The meteorological variables (Rainfall, Relative 

Humidity, Temperature, and Wind Speed) utilized in this 

study were sourced from the NASA climate data portal 

(https://power.larc.nasa.gov/data-access-viewer/). The 

collection has 37 years of time series data, from January 1, 

1985, to December 31, 2022. The data encompasses the 

year, month, and mean measurements of the 

meteorological variables. These are the empirical 

observation data, and the optimal model should precisely 

forecast these values. Figure 2 depicts the flowchart for the 

model formulation. 

 

3.2 Methods used  

3.2.1 Backpropagation Artificial Neural Network 

(BPANN)  

BPANN is a supervised machine learning technique and a 

variant of multilayer feedforward neural networks, 

including three layers: the input layer, hidden layer, and 

output layer. This research utilized Rainfall, Relative 

Humidity, Temperature, and Wind Speed as input 

variables, with Temperature as the outcome variable. In 

the BPANN model construction, it is essential to 

normalize the dataset to mitigate the effects of differing 

dimensions and units of the variables (Huang et al., 2016). 

The initial data utilized for BPANN iteration and model 

development are represented in many units, each with 

distinct physical interpretations (Peprah & Larbi, 2021). 

To maintain consistency in the BPANN model, datasets 

are routinely standardized to a designated interval, such as 

[-1, 1], [0, 1], or another scaling standard. This 

investigation standardized the input and output variables 

within the range of [-1, 1], as specified by Equation (1) 

(Mueller & Hemond, 2013). 

   
 xx

xxzz
zz

i

i

minmax

minminmax

min 


          (1) 

 

In this context, 𝑧𝑖 denotes the normalized data, 𝑥𝑖 signifies 

the observed temperature values, while 𝑥𝑚𝑖𝑛  and 𝑥𝑚𝑎𝑥 

indicate the minimum and maximum measured 

temperature values, with 𝑧𝑚𝑖𝑛 and 𝑧𝑚𝑎𝑥  assigned values of 

1 and -1, respectively. To ascertain the ideal weight 

configuration and the most effective learning technique for 

the research region, the network was trained utilizing 

thirteen distinct machine learning algorithms, including 

Levenberg-Marquardt, Bayesian Regularization, and the 

Resilient Backpropagation technique. Scaled Conjugate 

Gradient, Fletcher-Powell Conjugate Gradient, Polak-

Ribiere Conjugate Gradient, Broyden-Fletcher-Goldfarb-

Shanno Quasi-Newton. Conjugate Gradient with 

Powell/Beale Restarts. Gradient Descent, Gradient 

Descent with Momentum, Gradient Descent with Adaptive 

Learning Rate, Gradient Descent with Momentum and 

Adaptive Learning Rate, and One-Step Secant. 

 

The dataset was divided into training (70%) and testing 

(30%) subsets. The training aim was to identify the weight 

configuration among neurons that globally minimizes the 

error function. The primary purpose of the testing set was 

to evaluate the generalization capability of the trained 

network. The training was halted when the error on the 

testing dataset started to rise. The optimal model was 

chosen based on the minimal evaluation and validation 

statistical metrics: mean error (ME), root mean absolute 

error (RMAE), mean square error (MSE), root mean square 

error (RMSE), and standard deviation (SD). The metrics 

are further discussed in the model assessment and 

validation section.  
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Figure 2. Flowchart of the Research Methodology 

 

The Tansig and Purelin hyperbolic activation functions 

were employed for the hidden and output layers, 

respectively, during network training to include non-

linearity into the network. The hyperbolic tangent function 

is defined in Equation (2). 

 

 
  1

1

2
tanh

2







e
V xx

x            (2) 

 

x denotes the cumulative weighted inputs. BPANN is an 

iterative machine learning training methodology, wherein 

the network was iteratively trained by adjusting the 

number of hidden neurons from 1 to 50, until the ideal 

model architecture was attained. 

 

Bayesian Regularization Backpropagation Artificial 

Neural Network (BRBPANN) 

BRBPANN, using MATLAB syntax, written as trainbr, is 

a training method that changes the weights and bias values 

using Levenberg-Marquardt optimization (Kaur & Salaria, 

2013). This technique minimizes a mixture of squared 

errors and weights to achieve the ideal balance for 

constructing a network that generalizes well (Kaur and 

Salaria, 2013). According to Foresee and Hagan (1997), 

the strategy for enhancing generalization is known as 

regularization. The purpose of training is to minimize the 

sum of squared errors, 𝐸𝐷. This indicates that the first 

training goal function is 𝐹 = 𝐸𝐷. However, regularization 

introduces an extra factor, 𝐸𝑊, and the objective function 

is thus defined as illustrated in Equation (3) (Foresee and 

Hagan, 1997). 

 

EE wD
F               (3) 

 

𝐸𝑊 represents the sum of the squared network weights, 

whereas 𝐸𝐷 is the total of network errors; α and β are the 

parameters of the objective function. Foresee and Hagan 

(1997) assert that the relative magnitude of these 

characteristics determines the focus of training. When α is 

significantly less than β, the algorithm focuses on 

minimizing network mistakes; conversely, when α is 

significantly more than β, the training prioritizes the 

decrease of weight size, which may lead to increased 

network faults, ultimately producing a more streamlined 

network. The difficulty with regularization is determining 

the appropriate values for these parameters. α and β are 

established by Bayes' rule, with a comprehensive 
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methodology for their calculation explained by Foresee 

and Hagan (1997). 

 

Levenberg-Marquardt Backpropagation Artificial 

Neural Network (LMBPANN)  

The LMBPANN algorithm, represented by the MATLAB 

syntax trainlm, is an iterative method for minimizing a 

multivariate error function E, defined as the sum of the 

squares of the discrepancies between the actual output (𝑦𝑖) 

and the goal output (𝑡𝑖) (Adeoti & Osanaiye, 2013), as 

expressed in Equation (4):. 

 

 (4) 

 

The LMBPANN was developed to achieve second-order 

speed without the necessity of calculating the Hessian 

matrix. Nonetheless, the Hessian matrix (H) and the 

gradient (g) may be estimated using Equations (5) and (6), 

respectively, when the performance function is expressed 

as a sum of squares.  

(5) 

 

(6) 

 

J represents the Jacobian matrix, which comprises the first 

derivatives of the network errors concerning the biases and 

weights, whereas e is the network error vector. The 

Jacobian matrix may be derived by a conventional 

backpropagation method, which is considerably less 

intricate than the computation of the Hessian matrix 

(Baghirli, 2015). The LMBPANN method utilizes this 

approximation of the Hessian matrix in the subsequent 

Newton-like update, as seen in Equation (7): 

 

(7) 

 

w denotes connection weights, µ signifies the damping 

term, and I represents the identity matrix. The LMBPANN 

employs a mix of the Gauss-Newton technique and 

gradient descent in its iterative procedure (Peprah and 

Larbi, 2021). When µ is 0, it transforms into a Gauss-

Newton technique, employing the estimated Hessian 

matrix. When µ is substantial, it functions as a gradient 

descent algorithm with a minimal step size. Newton's 

approach exhibits superior speed and precision in 

proximity to an error minimum; hence, the objective is to 

transition to Newton's method expeditiously. 

Consequently, µ diminishes following each successful step 

(reduction in the performance function) and is augmented 

just when a tentative step might enhance the performance 

function. Consequently, the performance function will 

consistently diminish with each iteration of the algorithm 

(Baghirli, 2015). 

 

 

 

Resilient Algorithm Backpropagation Artificial Neural 

Network (RABPANN)  

The RABPANN technique, represented in MATLAB as 

(trainrp), is a neural network training method that operates 

analogously to the conventional backpropagation 

procedure. The fundamental difference resides in the 

method of updating the connection weights (Prasad et al., 

2013). In traditional backpropagation, the update is 

determined by the size of the partial derivative, as 

expressed in Equation (8). 

 

(8) 

 

where α represents the learning rate, 𝑥𝑗(𝑚) signifies the 

inputs transmitted back to the 𝑖𝑡ℎ neuron at time step m, 

and 𝛿𝑘(𝑚) defines the associated error gradient. For the 

RABPANN, an individual delta ∆𝑗𝑘 is calculated to 

ascertain the magnitude of the weight 𝑤𝑗𝑘  update for each 

connection. The learning rule defined in Equation (9) is 

employed in the computation of ∆𝑗𝑘. 

 

(9) 

 

where 0 <  𝑛−  < 1 <   𝑛+.  

Significantly, in the RABPANN method, the weight 

adjustment is determined not by the amount of the 

derivatives but by the behavior of the signs of two 

consecutive derivatives. Whenever the partial derivative of 

the relevant weight 𝑤𝑗𝑘 alters its sign, it signifies that the 

previous update was excessively big, causing the 

algorithm to bypass a local minimum. In this scenario, the 

update value ∆𝑗𝑘is diminished by the factor 𝑛−. If the 

derivative maintains its sign, the updated value is 

somewhat raised to enhance convergence in shallow areas 

(Riedmiller and Braun, 1992; Prasad et al., 2013). The 

weight update rule stays consistent with Equation (10), 

except when the partial derivative reverses sign. In such 

instances, the prior update step that caused a leap beyond 

the minimum is reversed by Equation (11). Upon a change 

of sign, the adaptation process recommences. This 

modification of update values and weights occurs each 

time the complete pattern set is submitted to the network. 

 

  (10) 

 

(11) 
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Fletcher-Reeves Conjugate Gradient Backpropagation 

Artificial Neural Network (FRCGBPANN)  
The FRCGBPANN technique, represented in MATLAB 

syntax as (traincgf), is a variant of the Conjugate Gradient 

method established by Fletcher and Reeves in 1964. This 

approach is capable of training any network provided that 

its weights, net inputs, and transfer functions possess 

derivative functions. Backpropagation is utilized to 

compute the derivatives of performance concerning the 

weight and bias vectors M. Each vector Mi is modified by 

Equation (12), stated as: 

(12) 

where δM denotes the search direction, with α being the 

parameter chosen to optimize performance along that 

trajectory. The line search tool is employed to identify the 

minimum point. The primary search direction is the 

negative gradient of the performance function. In 

following iterations, the search direction is determined 

using the updated gradient and the preceding search 

direction, as illustrated in Equation (13). 

 

(13) 

 

where gM denotes the gradient. The parameter β can be 

calculated by many methods. The Fletcher-Reeves variant 

of the conjugate gradient technique is computed using 

Equation (14). 

 

(14) 

 

where 𝑔𝑘−1
𝑇 𝑔𝑘−1 represents the squared norm of the 

preceding gradient, and the current gradient's squared 

norm is denoted as well. 

 

Polak-Ribiere Conjugate Gradient Backpropagation 

Artificial Neural Network (PRCGBPANN)  

The PRCGBPANN technique, represented in MATLAB 

syntax as (traincgp), is an alternative iteration of the 

conjugate gradient method introduced by Polak and 

Ribiére in 1969. In this method, the search direction (p) for 

each iteration is defined by Equation (15). 

 

(15) 

     

The constant βk for the Polak-Ribiére update is calculated 

using Equation (16).  

 

(16) 

          

Equation (16) represents the inner product of the prior 

gradient change with the current gradient, normalized by 

the square of the prior gradient's norm. 

 

 

 

Scaled Conjugate Gradient Backpropagation Artificial 

Neural Network (SCGBPANN)  

The SCGBPANN training technique, represented in 

MATLAB syntax as (trainscg), is a conjugate gradient 

approach initially formulated by Moller in 1993. The 

BPANN machine-learning technique fundamentally 

modifies the weights in the direction of steepest descent, 

namely the greatest negative gradient direction (Baghirli, 

2015). This direction represents the steepest decline of the 

performance function. Hagan et al. (1996) discovered that 

although the steepest descent path yields a swift reduction, 

it does not inherently provide the quickest convergence.  

In the construction of the SCGBPANN model, a search is 

conducted in this manner, resulting in typically quicker 

convergence than the steepest descent while maintaining 

the error reduction attained in prior phases (Baghirli, 2015; 

Kisi and Uncuoglu, 2005). This orientation is termed the 

conjugate direction (Baghirli, 2015). Furthermore, the step 

size is modified at each iteration, and a search is performed 

in the conjugate gradient direction to ascertain the ideal 

step size (Baghirli, 2015). This method aids in reducing the 

performance function along that trajectory.  

 

SCGBPANN starts its process by exploring the steepest 

descent direction during the first iteration, as delineated in 

Equation (17) (Baghirli, 2015). Additionally, 

SCGBPANN uses line search methodologies to estimate 

the step size, hence eliminating the necessity of calculating 

the Hessian matrix and identifying the best displacement 

along the prevailing search direction, as seen in Equation 

(18). The subsequent search direction is established by 

conjugating with the preceding search direction by 

Equation (19). The standard method for deriving the new 

search direction entails integrating the current steepest 

descent direction with the prior direction (Baghirli, 2015; 

Sandhu and Chhabra, 2011; Hagan et al., 1996).  

 

(17) 

(18) 

   (19) 

The several categories of conjugate algorithms are 

differentiated by the method of calculating the factor βk 

(Baghirli, 2015; Kisi and Uncuoglu, 2005). Likewise, 

there exists a significant likelihood of employing an 

alternative method for calculating the step size instead of 

the line search strategy. The objective is to integrate the 

model trust region methodology (Baghirli, 2015), 

recognized from the LMBPANN machine learning 

algorithm, with the SCGBPANN technique. This 

methodology is referred to as the SCG and is further 

explained in Moller’s (1993) publications. This model 

method, as indicated by Equation 19, represents the 

approximation of the Hessian matrix. ε represents the total 

error function, while ∇ε denotes its gradient. Scaling 

factors λk and δk are added to approximate the Hessian 

matrix, initialized by the user at the algorithm's 

commencement, constrained so that 0 <  𝜆𝑘  <  10−𝑏 and 

0 <  𝛿𝑘  <  10−4 (Baghirli, 2015). In the construction of 

the SCGBPANN model, the computation and orientation 
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of the βk factor are conducted by Equations (20) and (21), 

respectively. 

 

(20) 

   (21)  

 (22) 

 

Furthermore, design parameters are separately modified at 

each iteration stage, which is a critical component for the 

algorithm's success. This method provides a considerable 

benefit compared to line search-based algorithms 

(Baghirli, 2015). Furthermore, the model technique 

employs a quadratic approximation in the vicinity of a 

point ω, represented by 𝜀𝑞𝑤(𝑦), as specified in Equation 

(23): 

 

𝜀𝑞𝜔(𝑦) = 𝜀(𝜔) + 𝜀(̀𝜔)𝑦
𝑟 +

1

2
𝑦𝑟𝜀̈(𝜔)𝑦   (23) 

 

To ascertain the minimum of 𝜀𝑞𝑤(𝑦), It is essential to 

identify the key locations (Peprah and Larbi, 2021). The 

critical points provide solutions to the linear system 

established by Moller (1993). The SCG method is 

adaptable and capable of training any network, given that 

its weight, net input, and transfer functions possess 

derivative functions (Peprah and Larbi, 2021; Sandhu and 

Chhabra, 2011). 

 

Broyden-Fletcher-Goldfarb-Shanno Quasi-Newton 

(BFGSQNBPANN)  

The BFGSQNBPANN technique, referred to as (trainbfg) 

in MATLAB, is a Quasi-Newton approach within the 

second derivative line search category for addressing 

unconstrained optimization issues (Ibrahim et al., 2014). 

This approach employs a quadratic Taylor approximation 

of the goal function near a specific point, as defined in 

Equation (24) (Biglari and Ebadian, 2015):  

 

           xHxgxfqxf
TT

2

1


         (24) 

 

where g(x) represents the gradient vector and H(x) denotes 

the Hessian matrix. The requisite condition for a local 

minimum of g(δ) concerning δ is expressed in the linear 

system defined in Equation (25) as follows:  

 

(25) 

 

This subsequently yields the Newton direction δ for the 

line search, as defined by Equation (26): 

 

   xgxH 
1

               (26)  

 

The precise Newton direction, a fundamental 

characteristic of Newton-type approaches, is dependable 

when the Hessian matrix is present, positive definite, and 

the discrepancy between the actual objective function and 

its quadratic approximation is minimal. Quasi-Newton 

techniques utilize matrices that estimate the Hessian 

matrix or its inverse, instead of calculating the Hessian 

matrix precisely, as is done in Newton-type methods. 

These matrices are often represented as 𝛽 ≈ 𝐻 and 𝐷 ≈
 𝐻−1. They are modified at each iteration and may be 

generated using a variety of strategies, from basic 

procedures to more sophisticated approaches. This 

modelling approach utilizes an updating algorithm to 

approximate the Hessian matrix 𝐻(𝑥∗), as defined in 

Equation (27): 
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where 𝑠𝑖 = 𝑥𝑖+1 − 𝑥𝑖, 𝑦𝑖 = 𝑔𝑖+1 − 𝑔𝑖. Initially, 𝛽0 may be 

assigned any symmetric positive definite matrix, such as 

the identity matrix, which is frequently utilized. This 

modelling approach exhibits superlinear convergence, 

with resource intensity approximated at 𝑂(𝑛2) each 

iteration for an n-component argument vector. 

 

Conjugate Gradient with Powell/Beale Restarts 

Backpropagation Artificial Neural Network 

(CGPBRBPANN)  
The CGPBRBPANN algorithm is represented in 

MATLAB using the syntax traincgb. Sandhu and Chhabra 

(2011) state that in conjugate gradient algorithms, the 

search direction is sometimes reverted to the negative 

gradient. The typical reset transpires when the quantity of 

network weights and biases matches the number of 

iterations. Nevertheless, other reset methodologies can 

improve training efficiency. One method is the 

Powell/Beale Restarts methodology (Powell, 1977; Beale, 

1972). This strategy reinitiates the search direction when 

there is negligible orthogonality remaining between the 

current gradient and the preceding gradient (Sandhu and 

Chhabra, 2011). Equation (28) is employed to ascertain the 

appropriate moment to revert the search direction to the 

negative gradient. 

 

(28) 

 

 

 

where 𝑔𝑛 is the gradient at the 𝑛𝑡ℎ iteration. Upon 

fulfillment of this condition, the search direction is 

recalibrated to the negative gradient. This model is capable 

of training any network provided that its weights, net 

inputs, and transfer functions possess derivative functions. 

Backpropagation is employed to compute the derivatives 

of performance concerning the weight and bias vectors M. 

Each vector M is modified according to Equation (11). The 

line search tool is utilized to identify the minimum point. 

 

One Step Secant Backpropagation Artificial Neural 

Network (OSSBPANN)  

The OSSBPANN algorithm, represented in MATLAB 

with the syntax (trainoss), seeks to integrate conjugate 

gradient techniques with Quasi-Newton (secant) 

approaches (Mukkamala et al., 2003). This model does not 
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retain the entire Hessian matrix but presumes that the 

Hessian at each iteration is the identity matrix. This 

method permits the computation of the new search 

direction without the necessity of inverting the matrix 

(Mukkamala et al., 2003).  

 

The approach is capable of training any network provided 

that its weights, net input, and transfer functions possess 

derivative functions. Backpropagation is employed to 

compute the derivatives of performance concerning the 

weight and bias vectors M. Each vector 𝑀𝑖 is modified by 

Equation (11), analogous to conjugate gradient models. 

The line search function identifies the minimum point. The 

first search direction is the negative gradient of 

performance. In succeeding iterations, the search direction 

is determined by the current gradient and the variations in 

weights and gradient from the preceding iteration, as 

defined by Equation (29).  

 

   (29) 

 

where 𝑔𝑀 represents the gradient, 𝑀𝑠𝑡𝑒𝑝 denotes the 

alteration in weights from the preceding iteration, δgM 

signifies the variation in the gradient from the prior 

iteration, and αC and βC are the combinatorial scalar 

products of gM, 𝑀𝑠𝑡𝑒𝑝, and δgM.  

 

Gradient Descent Backpropagation Artificial Neural 

Network (GDBPANN)  

The GDBPANN model is represented in MATLAB using 

the syntax (traingd). In the construction of the GDBPANN 

model, the weights and biases are adjusted by the negative 

gradient of the performance function (Moini and 

Lakizadeh, 2011). Backpropagation is employed to 

compute the derivatives of performance functions, ϑ, 

concerning the weight ω and bias vector M. Each vector 

𝑀𝑖 is modified by the gradient descent, as delineated in 

Equation (30) as follows:  

    (30) 

 

In this context, α represents the learning rate. The learning 

rate is applied to the negative gradient to calculate 

adjustments to the weights and biases. An elevated 

learning rate produces larger increments, potentially 

destabilizing the algorithm. In contrast, a diminished 

learning rate yields smaller increments, which may 

prolong the convergence of the algorithm. 

 

Gradient Descent with Adaptive Learning Rate 

Backpropagation Artificial Neural Network 

(GDALRBPANN) 

In MATLAB, GDALRBPANN is represented by the 

syntax (traingda). In contrast to the typical traingd method, 

which maintains a constant learning rate during the 

training phase, traingda utilizes an adaptable learning rate. 

The algorithm's performance is significantly influenced by 

the configuration of the learning rate (Peteiro-Barral and 

Guijarro-Berdinas, 2013). Should the learning rate be 

excessively elevated, the algorithm may fluctuate and 

exhibit instability. If the learning rate is excessively small, 

the method may need an extended duration to converge. 

Establishing the ideal learning rate before training is 

difficult, as it fluctuates throughout the training process as 

the algorithm navigates the performance landscape. To 

resolve this, the traingda method adaptively modifies the 

learning rate, striving to maximize the step size while 

ensuring stability. The learning rate adjusts according to 

the intricacy of the local error landscape (Peteiro-Barral 

and Guijarro-Berdinas, 2013). In the training algorithm, 

the initial network output and error are computed. During 

each iteration, updated weights and biases are determined 

utilizing the current learning rate, followed by the 

computation of new outputs and mistakes. 

 

Gradient Descent with Momentum Backpropagation 

Artificial Neural Network (GDMBPANN)  

In MATLAB, GDMBPANN is represented by the syntax 

traingdm. The traingdm model enables a network to adapt 

to both the local gradient and recent trends in the error 

surface, functioning as a low-pass filter (Garcez et al., 

2008). Momentum enables the network to disregard minor 

elements in the error landscape. In the absence of 

momentum, the network may become ensnared in 

superficial local minima. The network may navigate past 

such entrapments with momentum. The training procedure 

relies on two parameters: the learning rate, α, and the 

momentum constant, γ. The momentum constant, γ, 

quantifies momentum and ranges from 0 (indicating no 

momentum) to values approaching 1 (indicating 

substantial momentum). A momentum constant of 1 

renders the network entirely unresponsive to the local 

gradient, impeding effective learning. Backpropagation is 

employed to compute the derivatives of the performance 

function ϑ concerning the weights ω and bias vectors M. 

Each vector 𝑀𝑖 is modified by gradient descent with 

momentum, as delineated in Equation (31): 

 

 (31) 

 

where 𝛿𝑀𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 denotes the prior alteration to the weight 

or bias.  

 

Gradient Descent with Momentum and Adaptive 

Learning Rate (GDMALRBPANN)  

GDMALRBPANN is represented in MATLAB using the 

syntax (traingdx). The traingdx method integrates an 

adaptable learning rate with momentum-based training. 

This model resembles traingda, but incorporates the 

momentum coefficient, γ, as an extra training parameter. 

The algorithm is capable of training any network, 

contingent upon the existence of derivatives for its 

weights, net inputs, and transfer functions. 

Backpropagation is employed to compute the derivatives 

of the performance function, ϑ, concerning the weight and 

bias vectors, M. Each vector, 𝑀𝑖, is modified utilizing 

gradient descent with momentum, as delineated in 

Equation (32): 

 

(32) 
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where 𝛿𝑀𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 denotes the preceding alteration to the 

weight or bias, and α represents the learning rate. In each 

cycle, if performance declines relative to the established 

target, the learning rate is augmented by a factor (often 

1.05). If the performance improves by more than the factor 

(usually 1.04), the learning rate is modified by a different 

factor (typically 0.7), and the modification that enhanced 

the performance is not implemented. 

 

3.2.2 Model Development  

This study assessed the predictive efficacy of supervised 

artificial neural network (ANN) models for forecasting 

monthly mean land surface temperature (LST) using 

thirteen distinct training techniques. The essential 

parameters for fine-tuning were established in advance, 

and the model architecture was derived from prior research 

conducted by Hornik et al. (1989), Braspenning et al. 

(1995), and Beale et al. (2017). The selected model 

architecture included a single hidden layer utilizing a 

hyperbolic tangent transfer function and an output layer 

employing a linear transfer function. A trial-and-error 

technique was employed to ascertain the appropriate 

number of neurons in the hidden layer, examining a 

spectrum from 1 to 50 neurons. This investigation 

determined that employing 1 to 50 neurons in the hidden 

layer produced optimal outcomes for the backpropagation 

artificial neural network (BPANN) models in this study. 

Nevertheless, certain specifics of the trial-and-error 

approach were not disclosed.  

 

Thus, the selected model architecture for this research was 

[4 – 1 – 1], signifying 4 inputs (Rainfall, Relative 

Humidity, Temperature, Wind Speed), one hidden layer, 

and one output layer (Temperature). This framework was 

employed to assess the efficacy of various training 

methods. The BPANN models underwent training for 

5000 epochs, utilizing a learning rate of 0.03 and a 

momentum coefficient of 0.9. The MATLAB R2018a 

software was used to execute the BPANN utilizing the 

thirteen procedures delineated in table 1. The MATLAB 

environment was run on a machine equipped with an 

Intel(R) Core(TM) i5-7200U CPU working at 2.5GHz, a 

2.71 GHz processor, 12.0 GB of RAM, a 64-bit operating 

system, and an X64-based processor.  

 

In unsupervised artificial neural networks, including the 

RBFANN and GRANN models, training significantly 

depended on the width parameter (spread constant). Thus, 

the ideal value for this parameter was established using a 

sequential trial-and-error method during each iterative 

training procedure, spanning from 0 to 1.  

 

3.2.3 Radial Basis Function Artificial Neural Network 

(RBFANN)  

The RBFANN model is an unsupervised learning 

approach grounded in functional approximation. It 

comprises three functionally separate layers: an input 

layer, a hidden layer, and an output layer. The input layer 

consists of sensory units that link the network to its 

surroundings. The second layer, known as the hidden 

layer, executes a nonlinear transformation from the input 

space to the hidden space. The output layer is linear, 

delivering the network's response to the activation pattern 

applied at this layer. This study examined Rainfall, 

Relative Humidity, Temperature, and Wind Speed as input 

factors, with Temperature as the outcome variable. The 

dataset utilized for model formulation was partitioned into 

training data, accounting for 70% of the entire dataset, and 

testing data, representing 30%. The RBFANN serves as an 

accurate interpolator (Erdogan, 2009); hence, a linear 

function is employed in the input neurons, and the 

connections between the input and hidden layers remain 

unweighted (Kaloop et al., 2017). This study employs the 

Gaussian function, with the output neuron representing the 

summation of the weighted hidden output layer, as 

illustrated in Equation (33) (Erdogan, 2009). 

 

 

 

Table 1. Supervised Backpropagation Training Functions and their Respective Algorithms 

Training Function Syntax in 

MATLAB 

Algorithm Type 

trainlm Levenberg-Marquardt 

trainbr Bayesian Regularization 

trainbfg Broyden-Fletcher-Goldfarb-Shanno 

Quasi-Newton 

traincgb Conjugate Gradient with Powell/Beale 

Restarts 

traincgp Polak-Ribiere Conjugate Gradient 

traincgf Fletcher-Reeves Conjugate Gradient 

traingd Gradient Descent 

traingdm Gradient Descent with Momentum 

traingda Gradient Descent with Adaptive 

Learning Rate 

trainscg Scaled Conjugate Gradient 

traingdx Gradient Descent with Momentum and 

Adaptive Learning Rate 

trainoss One Step Secant 

trainrp Resilient algorithm Backpropagation 
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where n denotes the quantity of hidden neurons, 𝑥 ∈  𝑅𝑀 

signifies the input, 𝑘𝑗 indicate the output layer weights of 

the radial basis function network, and 𝜒𝑗(𝑥) represents the 

Gaussian radial basis function, as articulated in Equation 

34 (Srichandan, 2012; Idri et al., 2010): 
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where 𝑐𝑗  ∈  𝑅𝑚 and σ represent the center and breadth of 

the jth hidden neuron, respectively, ‖ ‖ signifies the 

Euclidean distance. 

 

3.2.4 Generalized Regression Artificial Neural 

Network (GRANN)  

GRANN was initially presented by Specht (1991) as a 

variant of the RBFANN, grounded in kernel regression 

networks (Hannan et al., 2010; Peprah and Larbi, 2021), 

with a one-pass learning approach and a highly parallel 

architecture (Dudek, 2011). GRANN has four layers: the 

input layer, the pattern layer (radial basis layer), the 

summation layer, and the output layer. This research 

identified Rainfall, Relative Humidity, Temperature, and 

Wind Speed as input factors, with Temperature as the 

output variable. The quantity of input units in the first layer 

is contingent upon the overall number of observational 

parameters. This layer is linked to the pattern layer, 

wherein each neuron signifies a training pattern along with 

its associated output. The pattern layer is subsequently 

linked to the summation layer. The summation layer 

comprises two forms of summation: a singular division 

unit and a summation unit (Hannan et al., 2010; Kumi-

Boateng and Peprah, 2020). The summation layer, in 

conjunction with the output layer, normalizes the output 

datasets. Radial basis and linear activation functions are 

employed in the hidden and output layers, respectively, 

during the neural network training. Every unit in the 

pattern layer is linked to two neurons in the summation 

layer. One neuron calculates the total of the weighted 

responses of the pattern, whereas the other neuron 

determines the unweighted outputs of the pattern neurons. 

The output layer computes the ratio of each neuron unit's 

output to the others, resulting in the estimated output 

variables, as shown in Equation (35): 

 

 

 












n

i i

n

i ii

i

x

xy
y

xG

xG

1

1

,exp

,exp.
 

        (35) 

where 𝑦𝑖 represents the weighted connection between the 

ith neuron in the pattern layer and the summation neuron, 

and the number of training patterns is denoted as G, which 

is defined by Equation 36 as:  

  
 

 




m

k

iki

i

xx
xxG

1

2

,


                 (36)  

 

where m denotes the quantity of elements in an input 

vector, and 𝑥𝑖 and 𝑥𝑖𝑘 signify the 𝑗𝑡ℎ member of 𝑥 and 𝑥𝑖, 

respectively. Throughout neural network training, the 

spread parameter was adjusted between 0 and 1 until the 

output with the least residuals, according to model 

assessment criteria, was obtained. The identical technique 

was employed for the training of the RBFANN model 

algorithm. 

 

3.2.5 Multivariate Adaptive Regression Splines Model 

(MARS)  

The MARS model, initially presented by Friedman (1991), 

is a non-linear, non-parametric regression-based 

supervised machine learning technique. MARS is a 

sequential linear regression method adept at managing 

higher-dimensional inputs (independent variables). It 

accomplishes this at equal intervals to investigate intricate 

and non-linear correlations between the response 

(dependent) and input (independent) variables (Raj and 

Gharineiat, 2021). The MARS model generates 

predictions by analysing the correlations between response 

and predictor variables (Yakubu et al., 2018).  

 

The training datasets are segmented into splines, which 

consist of distinct piecewise linear segments exhibiting 

varying gradients (Chen and Cao, 2014). The model 

contains a weighted summation of basis functions (BFs) 

organized in pairs, established according to a knot and 

subgroups to delineate an inflection zone (Raj and 

Gharineiat, 2021). The MARS model delineates data either 

globally or by linear regression between any two knots. 

The linear combination of the basis functions is expressed 

in Equation (37) as:  

 

                  (37) 

 

 

In this context, 𝛼𝑖⋯𝑛 represents the unknown coefficients 

estimated using the least squares approach, n denotes the 

number of terms included in the model, and βF(x) refers to 

the basis function derived from knots of a piecewise linear 

basis function. In the creation of the MARS model, the 

basis functions (BFs) are chosen according to the 

generalized cross-validation function (GCV) specified in 

Equation (38) as follows: 

 

(38) 

 

 

 

 

where n represents the number of data points, 𝑦𝑖  denotes 

the actual values of the data points, 𝑦�̌� signifies the 

predicted values for the data points, and C(M) is the 

penalty factor described by Equation (39) as: 

 

             (39) 
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where, ∂ represents the cost penalty factor associated with 

each basis function in the optimization process. Overfitting 

may occur when an excessive number of basis functions 

are chosen during the forward phase; hence, it is crucial to 

exclude some basis functions in the backward phase to 

identify the best model. 

 

3.2.6 Model Evaluation and Validation  

The assessment of the best model entails evaluating its 

prediction efficacy on separate validation datasets and 

comparing its projections with the recorded LST 

observations. The validation procedure involves the 

computation of evaluation metrics like Mean Error (ME), 

Root Mean Absolute Error (RMAE), Mean Square Error 

(MSE), Root Mean Square Error (RMSE), and Standard 

Deviation (SD). The mathematical formulations for these 

metrics are provided in Equations (40) through (44). 

 

        (40) 
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where n represents the total number of observations, 𝛼𝑖 and 

𝛽𝑖 symbolize the measured and forecast land surface 

temperature (LST) values from the model algorithms, μ 

signifies the residual between the measured and predicted 

temperature data, 𝜇𝜇̅̅ ̅ indicates the mean of the residuals, 

and i is an integer ranging from 1 to n.  

 

4 Results and Discussion  

 

4.1 Results 

To ascertain the most effective supervised machine 

learning algorithm (BRBPANN, LMBPANN, 

SCGBPANN, FRCBPANN, PRCGBPANN, RABPANN, 

BFGSQNBPANN, CGPBRBPANN, GDBPANN, 

GDMBPANN, GDALRBPANN, GDMALRBPANN, 

OSSBPANN), numerous iterative training sessions were 

executed to attain the optimal model outcomes. The ideal 

solution for the two unsupervised machine learning 

algorithms (RBFANN and GRANN), resulting in a smooth 

function, was achieved after several training iterations, 

adjusting the spread parameter from 0 to 1, with a 

maximum of 50 hidden neurons.  

 

The MARS model utilized 21 basis functions throughout 

the training and testing stages for forecasting monthly LST 

time series historical data. tables 2 to 4 illustrate an almost 

perfect correlation between the observed and anticipated 

output values (Temperature) for each model. This is 

further evidenced by the minimal values of the model 

assessment and validation metrics, including ME, RMAE, 

MSE, RMSE, and SD, observed during the training and 

testing of the predictable temperature values. The 

discrepancies between the observed and predicted LST 

values in both training and testing outcomes are minimal, 

as indicated by the employed statistical metrics. The 

outcomes obtained from both supervised and unsupervised 

ANN machine learning approaches, along with the MARS 

data mining model, closely correspond to the recorded 

LST values of the study area.  

 

The authors performed an extensive evaluation of 

supervised machine learning, Table 5 delineates the 

quantity of basis functions employed in the MARS model 

formulation, unsupervised machine learning, and MARS 

methodologies to identify the optimal LST prediction 

model for the research region utilizing the whole dataset, 

as outlined in table 6. The statistical analysis in table 6 

indicated that the suggested ANNs and MARS machine 

learning algorithms attained commendable outcomes with 

high accuracy, whereas GRANN produced good results 

but with little precision. The finding is corroborated by the 

statistical evaluations of ME, RMAE, MSE, RMSE, and SD 

displayed in table 6. Figures 3 to 18 provide line graph 

representations of the anticipated data for each model. 

whereas table 6 encapsulates the outcomes of both the 

ANNs and MARS models. Figure 19 illustrates the box 

plots for the implemented ANNs and MARS 

methodologies.  

 

4.2 Discussion  

4.2.1 Development of the Supervised Artificial Neural 

Networks Models  

A single-layer Backpropagation Artificial Neural Network 

(BPANN) model was trained with Tansig and Purelin 

activation functions for the hidden and output layers, 

respectively. The ideal model architecture, contingent 

upon the quantity of hidden neurons, was established using 

a systematic trial-and-error methodology utilizing 

assessment measures including ME, RMAE, MSE, RMSE, 

and SD. The quantity of concealed neurons ranged from 1 

to 50, and the network underwent training for 5000 epochs 

with a learning rate of 0.03, a minimum performance 

gradient of 0.0000001, a target of 0, a maximum of 6 

validation failures, and a momentum coefficient of 0.9.  

The optimal configurations of the BPANN models were 

attained through iterative training to predict the LST of the 

study area, utilizing thirteen distinct BPANN machine 

learning algorithms: BRBPANN, LMBPANN, 

BFGSQNBPANN, CGPBRBPANN, PRCGBPANN, 

FRCGBPANN, GDBPANN, GDMBPANN, 

GDALRBPANN, SCGBPANN, GDMALRBPANN, 

OSSBPANN, and RABPANN, with their corresponding 

MATLAB syntax as trainbr, trainlm, trainbfg, traincgb, 

traincgp, traincgf, traingd, traingdm, traingda, trainscg, 

traingdx, trainoss, and trainrp, respectively.  
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The optimal model configurations for predicting the LST 

achieved by BRBPANN, LMBPANN, BFGSQNBPANN, 

CGPBRBPANN, PRCGBPANN, FRCGBPANN, 

GDBPANN, GDMBPANN, GDALRBPANN, 

SCGBPANN, GDMALRBPANN, OSSBPANN, and 

RABPANN were determined to be [4-7-1], [4-8-1], [4-2-

1], [4-2-1], [4-7-1], [4-3-1], [4-12-1], [4-1-1], [4-1-1], [4-

2-1], [4-2-1], [4-2-1], and [4-1-1], respectively. These 

structures have four input variables (Rainfall, Relative 

Humidity, Temperature, Wind Speed), the maximum 

number of neurons employed to attain optimal results, and 

one output variable (forecasted temperature). These 

architectures produced the lowest values for statistical 

analysis metrics (ME, RMAE, MSE, RMSE, and SD).  

 

Table 2 presents the summary outcomes of the training and 

testing conducted with all 13 supervised ANN machine 

learning algorithms. The statistical results in table 2 

indicate that supervised machine learning approaches yield 

good outcomes with enhanced accuracy in predicting LST 

in the research region. Furthermore, in forecasting Land 

Surface Temperature (LST) for the study area, the 

OSSBPANN and GDALRBPANN models demonstrated 

efficiency, achieving optimal results in 86 and 110 

iterations within 0 and 1 second, respectively. In contrast, 

the GDBPANN and GDMBPANN models necessitated 

significantly more time, requiring 5000 iterations in 5 

seconds each to reach optimal model outcomes.  

 

The disparities in residuals across the models are 

promising, and the mean error (ME), root mean absolute 

error (RMAE), mean square error (MSE), root mean 

squared error (RMSE), and standard deviation (SD) for 

both training and testing yield favourable results. 

BRBPANN and LMBPANN have shown superiority in 

model assessment and validation metrics for forecasting 

land surface temperature in the research region. 

Supervised artificial neural networks are effective and 

efficient models for LST predictions, providing enhanced 

accuracy. Figures 3 to 15 illustrate the line graph 

representation of the supervised machine learning 

techniques for the thirteen distinct models utilized in this 

study.  

 

 
Figure 3. Line Graph Visualization of the BRBPANN 

model 

 

 

 

Table 2. Model results for Supervised Machine Learning Predictions (Units in °C) 

TRAINING 

PCI ME RMAE MSE RMSE SD EPOCH TIME 

BRBPANN 4.5444E-08 0.0002 4.9328E-12 2.2210E-06 1.1800E-08 876 10sec 

LMBPANN 1.6111E-07 0.0004 4.8998E-11 6.9996E-06 3.5000E-08 353 3sec 

BFGSQNBPANN -4.8686E-05 0.0070 2.1156E-06 0.0015 7.2900E-06 394 1sec 

CGPBRBPANN -0.00073 0.0271 0.0002 0.0123 2.8500E-05 121 0sec 

PRCGBPANN -0.0005 0.0229 0.0009 0.0306 9.4600E-05 125 0sec 

FRCGBPANN -0.0010 0.0311 0.0008 0.0291 3.0200E-05 127 0sec 

GDBPANN -0.0037 0.0609 0.0171 0.1307 5.3000E-05 5000 5sec 

GDMBPANN -0.0071 0.0844 0.0124 0.1115 2.6500E-04 5000 5sec 

GDALRBPANN 0.0277 0.1663 0.0271 0.1647 6.2200E-04 110 1sec 

SCGBPANN 0.0043 0.0654 0.0009 0.0294 6.3200E-05 132 0sec 

GDMALRBPANN 0.0034 0.0580 0.0093 0.0966 1.9200E-04 383 0sec 

OSSBPANN 0.0016 0.0402 0.0058 0.0761 1.7500E-04 86 0sec 

RABPANN -0.0025 0.0499 0.0020 0.0447 4.7400E-06 800 1sec 

TESTING 

PCI ME RMAE MSE RMSE SD EPOCH TIME 

BRBPANN 3.3742E-07 0.0006 4.1212E-12 2.0301E-06 6.55E-09 876 10sec 

LMBPANN -2.6702E-07 0.0005 2.7129E-11 5.2085E-06 1.9300E-08 353 3sec 

BFGSQNBPANN -5.7509E-06 0.0024 9.6787E-07 0.0010 6.1400E-06 394 1sec 

CGPBRBPANN 0.0027 0.0520 0.0002 0.0131 1.1500E-05 121 0sec 

PRCGBPANN 0.0043 0.0655 0.0007 0.0257 8.1400E-05 125 0sec 

FRCGBPANN 0.0101 0.1005 0.0007 0.0265 6.1400E-05 127 0sec 

GDBPANN -0.0115 0.1072 0.0242 0.1555 1.2500E-04 5000 5sec 

GDMBPANN -0.0026 0.0507 0.0061 0.0780 6.9800E-04 5000 5sec 

GDALRBPANN 0.0215 0.1467 0.0180 0.1343 1.0900E-03 110 1sec 

SCGBPANN 0.0091 0.0953 0.0005 0.0226 9.4300E-05 132 0sec 

GDMALRBPANN 0.0127 0.1129 0.0047 0.0688 5.0900E-04 383 0sec 

OSSBPANN 0.0035 0.0592 0.0027 0.0516 3.6300E-04 86 0sec 

RABPANN -0.0007 0.0260 0.0008 0.0288 1.8400E-04 800 1sec 
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Figure 4. Line Graph Visualization of the LMBPANN 

model 

 

 
Figure 5. Line Graph Visualization of the 

BFGSQNBPANN model 

 

 
Figure 6. Line Graph Visualization of the 

CGPBRBPANN model 

 

 
Figure 7. Line Graph Visualization of the 

PRCGBPANN model 

 

 
Figure 8. Line Graph Visualization of the 

FRCGBPANN model 

 

 
Figure 9. Line Graph Visualization of the GDBPANN 

 

 
Figure 10. Line Graph Visualization of the 

GDMBPANN model 

 

 
Figure 11. Line Graph Visualization of the 

GDALRBPANN model 

 

 
Figure 12. Line Graph Visualization of the 

SCGBPANN model 
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Figure 13. Line Graph Visualization of the 

GDMALRBPANN model 

 

 
Figure 14. Line Graph Visualization of the 

OSSBPANN model 

 

 
 

Figure 15. Line Graph Visualization of the RABPANN 

model 

 

Table 3. Model results for Unsupervised Machine 

Learning Predictions (Units in °C) 

TRAINING 

PCI ME RM

AE 

MS

E 

RM

SE 

SD EP

OC

H 

TI

M

E 

RBF

AN

N 

8.75

54E

-10 

2.96

00E

-05 

8.41

87E

-12 

2.90

15E

-06 

1.15

00E

-09 

50 12.

4se

c 

GR

AN

N 

0.00

07 

0.02

71 

0.02

33 

0.15

27 

9.53

00E

-04 

50 12.

5se

c 

TESTING 

PCI ME RM

AE 

MS

E 

RM

SE 

SD EP

OC

H 

TI

M

E 

RBF

AN

N 

2.08

09E

-7 

0.00

05 

2.29

85E

-11 

4.79

43E

-06 

5.19

00E

-09 

50 12.

4se

c 

GR

AN

N 

0.16

54 

0.40

67 

0.83

76 

0.91

52 

4.40

00E

-03 

50 12.

5se

c 

 

4.2.2 Development of the Unsupervised Artificial 

Neural Networks Models  

The optimum model architectures attained by the two 

unsupervised machine learning algorithms (RBFANN and 

GRANN) for predicting the land surface temperature 

(LST) of the region, with the minimal evaluation metrics, 

were identified as [4 50 1 1] and [4 50 0.1 1], respectively. 

This indicates the presence of 4 input variables 

(independent datasets), a maximum of 50 hidden neurons, 

a spread constant (ranging from 0 to 1), and 1 output 

variable (dependent dataset). The ideal spread parameter 

was established by adjusting it from 0 to 1 after each 

recurrent training session until the most favourable results 

were attained, as shown by statistical measures including 

ME, RMAE, MSE, RMSE, and SD.  

 

Table 3 presents the summary outcomes of the training and 

testing of the anticipated LST attained by the two 

strategies. Figures 16 and 17 illustrate the line graph 

representations generated by the two models. According to 

the statistical data presented in table 3, both unsupervised 

approaches attained commendable results in accurately 

forecasting the LST for the research region, demonstrating 

significantly enhanced accuracy and precision. Both 

models executed 50 iterations in under 12 seconds to get 

optimal outcomes. The ME, RMAE, MSE, RMSE, and SD 

for both training and testing are satisfactory and promising. 

The RBFANN outperformed the GRANN model in 

estimating the LST based on the statistical metrics 

obtained in this study.  

 

Nonetheless, both unsupervised machine learning systems 

demonstrated efficacy and realism as tools for LST 

forecasting in the region, with significantly enhanced 

accuracy. 

 

 
Figure 16. Line Graph Visualization of the RBFANN 

model 

 

 
Figure 17. Line Graph Visualization of the GRANN 

model 
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4.2.3 Development of the Multivariate Adaptive 

Regression Splines (MARS) Technique Model  

In the MARS model formulations for LST forecasting, 21 

basis functions were included in the training and testing 

phases to predict the monthly historical time series LST 

data. In the final model formulation, two basis functions 

were maintained, signifying that nineteen basis functions 

were eliminated throughout the backward training phase 

owing to overfitting. The training and testing outcomes are 

presented in table 4. Table 5 illustrates the quantity of basis 

functions included in the final model formulation, whereas 

figure 18 depicts the line graph visualization of the MARS 

model. Equation (45) is the optimum model utilized for 

predicting the monthly LST via the MARS model.  

 

The Salford Predictive Modeler Software (SPM V. 8.0) 

was utilized to develop the MARS model for predicting 

LST. The independent variables were Rainfall, Relative 

Humidity, Temperature, and Wind Speed, whilst the 

dependent variable was Temperature data. The SPM 

program was selected following the endorsement of 

Yakubu et al. (2018), who observed that it is engineered 

for exceptional accuracy, rapid performance, and efficacy 

in developing predictive, descriptive, and analytical 

models from datasets of any magnitude. The program is a 

robust, user-friendly mathematical instrument that 

corresponds with the authors' choices for research 

inquiries relative to other prominent data mining methods.  

 

𝑦(𝑖) = 25.11 + 1 × 𝐵𝐹1 − 1 × 𝐵𝐹2      (45) 

 

4.2.4 Comparing the predictive performance results of 

the ANNs Machine Learning and MARS models  

The predictive performance ranking of all employed 

approaches (Supervised, Unsupervised, and MARS) was 

assessed utilizing their model evaluation and validation 

statistical metrics: ME, RMAE, MSE, RMSE, and SD. 

Table 6 presents the assessment outcomes for all employed 

procedures. According to table 6, the model exhibiting the 

most favourable statistical indicators was determined to be 

the most effective for fitting the observed land surface 

temperature of the research area. Table 6 demonstrates that 

the MARS model produced the most favourable statistical 

values for ME, RMAE, MSE, RMSE, and SD, with 

respective values of 1.8705E-07 °C, 0.0004 °C, 3.3449E-

13 °C, 5.37835E-07 °C, and 1.6000E-09 °C. The box plot 

of all models illustrated in figure 19 and the model results 

presented in table 6 further corroborate these findings. The 

statistical indicators illustrate the prediction accuracy of 

the MARS model by presenting the metrics of the 

discrepancies between the observed and predicted LST 

values as residuals.  

 

Table 6 further illustrates the predictive capabilities of all 

the models utilized in this study. MARS attained superior 

model validation and assessment metrics relative to the 

alternatives. The GRANN model had the poorest 

performance for ME, RMAE, MSE, RMSE, and SD, with 

values of 0.0498 °C, 0.2233 °C, 0.2662 °C, 0.5159 °C, and 

7.7600 °C, respectively. This study concludes that the 

MARS model surpasses the ANN models in accurately 

anticipating monthly LST data. The enhanced efficacy of 

MARS in this study relative to ANN models may be 

ascribed to its reduced training duration and its greater 

capacity to address non-linearity and non-parametric 

challenges in the input datasets. 

 

 
Figure 18. Line Graph Visualization of the MARS 

model 

 

 

Table 4. Model results MARS models Predictions (Units in °C) 

TRAINING 

PCI ME RMAE MSE RMSE SD 

MARS 1.9908E-07 0.0004 3.4304E-13 5.8570E-07 2.2500E-09 

TESTING 

PCI ME RMAE MSE RMSE SD 

MARS 1.5876E-07 0.0004 3.1436E-13 5.6068E-07 1.0800E-09 

 

Table 5. Basis Functions Equations for the MARS Model 

Basis Functions Equations 

𝐵𝐹1 max(0, 𝑇𝑖 − 25.11) ; 

𝐵𝐹2 max(0,25.11 − 𝑇𝑖) ; 
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Table 6. Statistical Analysis of all the models (Units in °C) 

PCI ME RMAE MSE RMSE SD 

BRBPANN 1.3252E-07 0.0004 4.6908E-12 2.1658E-06 8.4300E-09 

LMBPANN 3.3423E-08 0.0002 4.2473E-11 6.5172E-06 2.4800E-08 

BFGSQNBPANN -3.5881E-05 0.0060 1.7733E-06 0.0013 5.0800E-06 

CGPBRBPANN 0.0003 0.0171 0.0002 0.0125 1.7800E-05 

PRCGBPANN 0.0009 0.0302 0.0009 0.0292 6.3200E-05 

FRCGBPANN 0.0023 0.0483 0.0008 0.0283 2.8400E-05 

GDBPANN -0.0060 0.0777 0.0192 0.1385 4.2200E-05 

GDMBPANN -0.0058 0.0759 0.0105 0.1027 1.8300E-04 

GDALRBPANN 0.0258 0.1607 0.0244 0.1560 4.4000E-04 

SCGBPANN 0.0057 0.0756 0.0008 0.0276 4.1200E-05 

GDMALRBPANN 0.0062 0.0785 0.0080 0.0892 1.2900E-04 

OSSBPANN 0.0022 0.0467 0.0049 0.0697 1.2200E-04 

RABPANN -0.0020 0.0442 0.0016 0.0406 2.2300E-06 

RBFANN 6.2675E-08 0.0003 1.2763E-11 3.5726E-06 9.4400E-10 

GRANN 0.0498 0.2233 0.2662 0.5159 7.7600E-04 

MARS 1.8705E-07 0.0004 3.3449E-13 5.7835E-07 1.6000E-09 

 

 
Figure 19. Box plot Visualization of all the models 

 

The predictive performance ranking of all utilized 

methodologies (Supervised, Unsupervised, and MARS) 

was evaluated using their model assessment and validation 

statistical metrics: ME, RMAE, MSE, RMSE, and SD. 

Table 6 delineates the evaluation results for all used 

methodologies. Table 6 indicates that the model with the 

most advantageous statistical metrics was identified as the 

most successful for modelling the observed land surface 

temperature of the study region. Table 6 indicates that the 

MARS model yielded the most advantageous statistical 

values for ME, RMAE, MSE, RMSE, and SD, with 

corresponding values of 1.8705E-07 °C, 0.0004 °C, 

3.3449E-13 °C, 5.37835E-07 °C, and 1.6000E-09 °C. The 

box plot of all models depicted in figure 19 and the model 

results shown in table 6 further substantiate these 

conclusions. The statistical indicators demonstrate the 

predictive accuracy of the MARS model by showcasing 

the metrics of the disparities between the observed and 

anticipated LST values as residuals.  

 

Table 6 further demonstrates the predictive efficacy of all 

models included in this investigation. MARS achieved 

improved model validation and evaluation metrics 

compared to the alternatives. The GRANN model had the 

least favourable performance for ME, RMAE, MSE, 

RMSE, and SD, yielding values of 0.0498 °C, 0.2233 °C, 

0.2662 °C, 0.5159 °C, and 7.7600 °C, respectively. This 

study reveals that the MARS model outperforms the ANN 

models in reliably predicting monthly LST data. The 

superior effectiveness of MARS in this study compared to 

ANN models may be attributed to its shorter training time 

and its better ability to tackle non-linearity and non-

parametric issues in the input datasets. 

 

5 Conclusions and Recommendations 

Weather characteristics, including temperature 

forecasting, pose significant challenges for energy 

producers, agriculture, climatologists, aircraft operators, 
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marine operators, and researchers. This problem has 

stimulated countless investigations in both past and recent 

decades. Existing research indicates that machine learning 

(ML) approaches frequently surpass classical methods 

owing to their capacity to manage data non-linearity, 

intermittence, and high variability challenges that older 

techniques inadequately handle, resulting in subpar 

performance. The recent emergence of Artificial 

Intelligence (AI)-driven machine learning methodologies 

has demonstrated efficacy in addressing non-linearity 

issues inherent in conventional forecasting models. This 

research utilized multivariate time series data over 37 

years, including Rainfall, Temperature, Relative 

Humidity, and Wind Speed from January 1985 to 

December 2022. The research employed a data mining 

methodology, namely the Multivariate Adaptive 

Regression Splines (MARS), in conjunction with fifteen 

Artificial Neural Networks (ANNs) machine learning 

models. Levenberg-Marquardt, Bayesian Regularization, 

Broyden-Fletcher-Goldfarb-Shanno Quasi-Newton 

method, Conjugate Gradient with Powell/Beale Restarts. 

Polak-Ribiere Conjugate Gradient Method, Fletcher-

Reeves Algorithm Conjugate Gradient, Gradient Descent, 

Momentum-Enhanced Gradient Descent, Adaptive 

Learning Rate Gradient Descent, Scaled Conjugate 

Gradient, Momentum and Adaptive Learning Rate 

Gradient Descent, One-Step Secant Method, Resilient 

Backpropagation Algorithm, Radial Basis Functions, and 

Generalized Regression. These models were utilized to 

forecast historical monthly land surface temperature data 

for the Aowin District. Selected sub-series of the variables 

(Rainfall, Relative Humidity, Temperature, Wind Speed) 

served as inputs for the ANNs and MARS models, while 

the original time series of the variable (Temperature) 

functioned as the output. Models were trained on 70% of 

the dataset, while the remaining 30% was allocated for 

validation and assessment. Evaluations of the statistical 

model encompassed mean error (ME), root mean absolute 

error (RMAE), mean squared error (MSE), root mean 

squared error (RMSE), and standard deviation (SD). The 

statistical analysis revealed that the MARS model 

outperformed the ANN models. The MARS model 

attained superior performance metrics, with ME, RMAE, 

MSE, RMSE, and SD values of 1.8705E-07 °C, 0.0004 °C, 

3.3449E-13 °C, 5.37835E-04 °C, and 1.6000E-09 °C, 

respectively. The findings indicate that the MARS model 

had superior effectiveness and reduced LST predicting 

error relative to the ANN models. The research indicates 

that the MARS model is superior for predicting monthly 

LST with enhanced accuracy for the study area. The 

performance of ANNs was comparatively inferior to that 

of the MARS model, likely because of the variability in the 

nonlinear dynamics of the independent variables, which 

the MARS-based models represented more adeptly.  

 

The effective modelling of meteorological factors 

(Rainfall, Relative Humidity, Temperature, Wind Speed) 

with the MARS model, aided by basis functions, probably 

enhanced the representation of LST dynamics. The study 

utilized satellite database archives, and subsequent 

research integrating more data, including wind direction, 

sun radiation, and other factors, might reinforce these 

results. This study reveals that MARS and ANN models 

are proficient in forecasting monthly LST across diverse 

locations. The authors focused on evaluating ANN-based 

machine learning and the MARS data mining 

methodology to illustrate their enhanced efficacy in LST 

forecasting. Future research may incorporate more climate 

change factors and examine various ML-based 

methodologies to determine their applicability across 

different regions of Ghana. Utilizing hybrid models that 

integrate neural networks with statistical models may 

improve the capacity to predict intricate non-linear 

patterns in LST. Future research may investigate the 

predictive accuracies of various ANN models, including 

Genetic Expression Programming (GEP), Gradient 

Boosting Tree, Random Forest, Statistical Methods, 

Numerical Weather Prediction (NWP), Cascade Forward 

Backpropagation Network, Layer Recurrent Network, 

Focused Time Delay Neural Network, Decision Tree, 

CART, K-Mean, Elman Neural Network, Wavelet, 

M5Tree model, Self-Organizing Map (SOM), Genetic 

Artificial Neural Networks, Convolutional Recurrent 

Neural Network (CRNN), Support Vector Machine 

(SVM), and Least Squares Support Vector Machine 

(LSSVM), alongside diverse regression and deep learning 

methodologies. A comparative evaluation of various 

models can yield a more thorough grasp of LST prediction 

for the research area.  . 
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