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Abstract: Lightning, a complex and potentially destructive atmospheric phenomenon, poses significant risks to public 

safety and infrastructure resilience particularly to the nation with limited resources and inadequate early warning system. 

In tropical regions, the frequency of lightning strikes, particularly during the monsoon season, underscores the 

importance of early warning systems. The development of accurate detection and timely warning infrastructures is 

essential to mitigate the impact of lightning events and enhance disaster preparedness. At present 46 lightning detection 

sensors (LDS) are installed across India, by the Indian Space Research Organization (ISRO). Each LDS is having 300 

Km range detection. The network is designed with a 50% overlap to ensure high geolocation accuracy and maintain 

redundancy in regions with a strong LDS presence. Though this study is focused on a region with a strong existing LDS 

network, we recognized that there are under developed nations with scarce resources, and inadequate early warning 

systems where the LDS network is weak or nonexistent. To address this concern, the primary objective of the study is 

to establish the correlation between the atmospheric parameters and lightning event to predict lightning before it occurs 

during monsoon season in tropical region. The study will be helpful to predict the lightning for the regions having the 

sparse LDS network or areas without LDS network by analysing the available MERRA-2 data and factors (Humidity, 

pressure and precipitation data) causing the lightning using AI techniques. This research relies on data from the Modern-

Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) dataset and the LDS dataset, focusing 

on the region between 86.68°E to 88.52°E longitude and 24.70°N to 26.42°N latitude during June 2022. To improve 

grid and temporal resolution, data refinement techniques were applied. Following this, statistical analyses, including the 

Chi-squared test, ANOVA, and Spearman-Rho correlation, were conducted to identify the parameters most strongly 

correlated with lightning occurrences. Humidity, pressure, and precipitation emerged as the most predictive factors.  

Using these parameters, the Extra Trees model with bagging was employed to predict lightning occurrences, and a 

Random Forest classifier was used to predict lightning intensity based on the number of strikes. These models were 

validated using additional datasets. The findings from this study have the potential to significantly advance early warning 

systems, particularly in nations with limited or no LDS coverage, thereby enhancing resilience to natural hazards such 

as lightning across a wider area. 

 

Keywords: MERRA-2, Lightning Detection Sensor, Chi-squared test, ANOVA and Spearman-Rho, Extra Trees, 

bagging, Random Forest classifier  

 

1. Introduction 

 

Lightning is among the most powerful and dangerous 

phenomena of the atmosphere. According to 

MONGABAY, between 2010 and 2020, lightning killed 

3,273 people in Bangladesh, or about four people a week 

(Islam R, 2022). This aligns in with a subtle alert on how 

fatal the phenomenon could be and how serious a concern 

it is to human safety. Yet, despite the leaps and bounds 

achieved in technology, forecasting and mitigating the 

effect of lightening remains a stiff challenge for the 

developing nations. The high mortality indeed points to 

the urgent need for more effective early warning systems 

and comprehensive public awareness campaigns to 

reduce casualties due to lightening. 

 

In the backdrop of above events, development of early 

warning system for lightning prediction is of most 

importance specially for the under developed countries, 

where it causes maximum life loss. Traditional statistical 

methods and early-warning systems for lightning 

prediction have shown limitations in effectiveness. Basic 

statistical analyses and simplistic models often fail to 

capture the complex, non-linear relationships in lightning 

activity, leading to issues with data latency and coverage. 

These methods struggle with real-time accuracy and 

adaptability. In contrast, advanced techniques like 

machine learning offer more precise predictions and 

improved reliability by handling complex data more 

effectively 

 

Towards this, excellent efforts have predominantly been 

focused on identifying correlations between various 

atmospheric and meteorological parameters and 

lightning activity (Zhang, 2024). This can be further 

enhanced by incorporating AI/ML for improved 

predictive accuracy. Based on the correlation of lightning 

and atmospheric parameters, this study focuses on 

correlating atmospheric parameters dataset provided by 

MERRA-2 and developing a model for predicting 

lightning events by integrating MERRA-2 dataset with 

LDS dataset using AI/ML for early warning system. 
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Although the extent of the Lightning Detection Sensor 

network in India is covering all the regions (Taori et al. 

2022, Venkatesh, Degala et al. 2023), ensuring maximum 

coverage in lightning detection, but there are countries 

with no or limited LDS coverage. The LDS is prone to 

electromagnetic interference, there are gaps in coverage 

in nations where there is limited LDS coverage also it 

works on the real time detection of the occurrence of 

lightning rather than early prediction. Our model, 

therefore, tries to fill these gaps by complementing the 

nations with some existing LDS network or no LDS 

network by integrating predictive capabilities using the 

power of artificial intelligence and machine learning. We 

can improve the lightning forecast accuracy and 

reliability by advance prediction of lightning, providing 

an improved early warning system to the meteorological 

department, disaster management agencies and public for 

enhanced safety. 

 

This study aims to enhance the capabilities of lightning 

prediction and detection by leveraging the Modern-Era 

Retrospective Analysis for Research and Applications, 

Version 2 (MERRA-2) dataset (GMAO, 2015), along 

with the LDS data, this research focuses on developing 

correlation between atmospheric parameters and 

lightning events, and developing robust model to predict 

lightning events before they occur. The study area, 

encompassing regions in Bihar, Jharkhand and West 

Bengal, was selected for its varied climatic zones, which 

offer a unique opportunity to analyse lightning patterns 

across different environmental conditions in tropical 

regions. 

 

This research employs a combination of statistical 

analyses and machine learning techniques to identify key 

meteorological parameters correlated with lightning 

occurrences. Parameters such as humidity, pressure, and 

precipitation are found to be the most predictive, and are 

used to train models like Extra Trees and Random Forest 

classifiers. The integration of these models with refined 

meteorological data holds the potential to significantly 

advance early warning systems, thereby enhancing 

resilience to lightning-related disasters in under 

developed nations. 

 

2. Study Area 

 

Part of Bihar, Jharkhand and West Bengal states of India 

is chosen as study area for lightning analysis, covering 

86.68°E to 88.52°E in longitude to 24.70°N to 26.42°N 

in latitude as shown in figure 1. The study area 

encompasses of districts with diverse rainfall and 

humidity patterns to offer a study of lightning activity 

across varied climatic zones and under the buffer zones 

of LDS locations Patna, Ranchi, Medinapur, Gangtok 

and Dhubri districts. 

 

These regions are among the most lightning-prone areas 

in India, with an average of 1,700 cloud-to-ground 

lightning strikes per day according to LDS data. Bihar, in 

particular, ranks as one of the most vulnerable states in 

terms of lightning-related casualties and injuries 

(Shankar, Kumar, & Sinha, 2024), with West Bengal and 

Jharkhand also experiencing significant impacts (Paul & 

Maity, 2023, Mondal, et al., 2023). 

 

 

 
 

Figure 1. Targeted area (86.68°E to 88.52°E in longitude to 24.70°N to 26.42°N in latitude (Zoomed) 
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The study area encompasses mostly varied climatic 

zones. For example, in Bihar, it includes Bhagalpur, 

Kishanganj, and Purnia districts having humid climate 

(Sattar, Khan, & Banerjee, 2021). In Jharkhand, Godda 

district experiences a tropical climate with hot summers, 

a monsoon season with moderate to heavy rainfall and 

mild winters. The climate is generally humid, particularly 

during the monsoon. The bounding box choice is 

strategic in tapping into the variability of lightning across 

these zones, given the stark contrast in climatic zones 

across the study area. As such, the variability between 

these zones will influence lightning pattern in marked 

ways.  

 

The analysis uses reanalysis atmospheric data to study 

lightning in these regions in order to understand the 

potential variables causing lightning strikes in these 

areas. The aim is to offer insight from these districts to 

serve as a baseline for risk assessment and management 

strategies for states in consideration. This could be used 

in understanding the dynamics of lightning in different 

climate zones and provides a method for observing this 

in most lightning affected zones in tropical region. 

 

3. Database and Methods 

 

3.1. Dataset 

The target area in this research spans from 86.68°E to 

88.52°E in longitude to 24.70°N to 26.42°N in latitude. 

The research objective was to predict the lightning event 

using the correlated parameters for the area under 

consideration. To achieve the objective, dataset used in 

this study can be divided into two categories: 

 

First, the dataset provided by LDS (Lightning Detection 

Sensor) gathered from the electromagnetic pulse emitted 

by a lightning strike. Parameters like time, Longitude, 

Latitude, Type and Current Id were sourced from 

Lightning Detection Sensors located in these areas as 

shown in Table 1 (Source: https://bhuvan-

app1.nrsc.gov.in/lightning/). As mentioned earlier, India 

has 46 lightning detection sensors (LDS) with over 98% 

confidence within a 300 km detection range for each 

sensor. The network is designed with a 50% overlap to 

ensure high geo-location accuracy and maintain 

redundancy in regions with a strong LDS presence 

(Venkatesh et al. 2023).  

 

Second the atmospheric reanalysis dataset, Modern- Era 

Retrospective analysis for Research and Applications, 

Version 2 (MERRA-2) obtained from the official website 

of Global Modeling and Assimilation Office (GMAO) 

maintained by National Aeronautics and Space 

Administration (NASA). Modern-Era Retrospective 

Analysis for Research and Applications Version 2 

(MERRA-2) is a significantly improved version of the 

original MERRA dataset which begins in 1980. 

MERRA-2 takes advantage of advancements in the 

assimilation system to include newer observations, such 

as hyperspectral radiance, microwave observations, and 

GPS-Radio Occultation measurements, resulting in a 

more detailed and accurate atmospheric reanalysis. For 

example, the MERRA-2 atmospheric reanalysis dataset, 

specifically the M2I1NXASM (or inst1_2d_asm_Nx) 

collection provides 2-dimensional hourly instantaneous 

data which is very important for meteorological 

conditions analysis. This dataset has a total of 18 

parameters which include temperature at 2 meters and at 

10 meters, wind components at 2 meters, 10 meters, and 

50 meters, sea level pressure, total precipitable water, 

total cloud ice, specific humidity, and sea level pressure 

shown in Table 2. These parameters give a good view of 

the conditions in the near-surface and upper-atmosphere, 

specifically wind patterns, water vapor distribution, 

pressure variances, etc., and are very important for 

weather and climate studies. The improvements in 

MERRA-2 mean that the representation of the 

atmosphere is more reliable and there are so many 

potential scientific and practical applications that rely on 

the continual use and availability of the MERRA-2 

((GMAO), 2015).  

 

LDS's location, time, and type of lightning strikes are 

highly accurate due to India' s well-positioned 46 sensor 

networks, which provide real-time data. Reliable 

monitoring of lightning is facilitated by this. By utilizing 

cutting-edge technology, MERRA-2 offers 

comprehensive atmospheric data, including temperature, 

wind, and humidity, to provide context. The 

identification of lightning is facilitated by this. 

 

By combining them, they provide a comprehensive 

understanding of the lightning events and the 

surrounding atmospheric conditions, making them ideal 

for forecasting nearby storms. 

 

3.2. Statistical Analyses Techniques 

Chi-Squared Test- The Chi squared test is a statistical 

method for testing independence between categorical 

variables such as lightning data and meteorological 

parameters and also provides insight into the impact of 

those variables. The Chi-Square test does not explain to 

the strength of the relationship between the variables, but 

it does inform if there is a relationship. (Singh, 

Lavakush., 2022) 

 

ANOVA and Spearman-Rho Correlation- In addition 

to the correlational statistics, we used ANOVA and 

Spearman- Rho approach to examine the relationship 

between lightning events and selected parameters as a 

group, in order to have a complete knowledge of the 

possible relationships. 

 

3.3.  Machine Learning Techniques 

Extra Trees (Extremely Randomized Trees)- Extra 

Trees offer a variation to the traditional Random Forests 

through the introduction of additional levels of 

randomness in how it determines the split points for 

decision trees. This deliberate introduction of 

randomness in Extra Trees is beneficial because it reduces 

the model's ability to adapt to the training data (overfit) 

and especially in cases where the data itself is noisy or 

the patterns are intricate. By preventing the model from 

adapting or fitting too closely to the training data 

examples, Extra Trees supports the generalization of the 

model when it is confronted with new data instances. 
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(Abdelkader, Jaziri, & Bernard, 2019). 

 

Bagging (Bootstrap Aggregating)- It is an ensemble 

machine learning method specifically designed to 

increase the stability and accuracy of predictive models. 

The approach is based on creating a series of different 

subsets from the original dataset by means of 

bootstrapping (random sampling with replacement). 

Each subset is then used to train a different decision tree 

classifier or machine learning model that is typically a 

high-variance mode. (Rocca, J. 2019) 

 

 

Table 1. Lightning Detection Sensor (LDS) data (Source: https://bhuvan-app1.nrsc.gov.in/lightning/) 

Time Strike 

Type 

Current 

CLS 

Current 

ID 

cx cy gid Latitude Longitude 

4:51:07 AM CG C1 13412 72.25 28.55 G067542 25.229 88.50429 

4:54:56 AM CG C1 13589 72.25 28.55 G067542 26.10299 87.77047 

5:03:51 AM CG C1 14264 72.25 28.55 G067542 25.08398 88.09991 

6:25:32 AM CG C2 21198 72.25 28.55 G067542 26.20184 87.41916 

6:39:48 AM CG C1 18073 72.25 28.55 G067542 26.33062 87.62166 

7:00:20 AM CG C1 16747 72.25 28.55 G067542 26.30667 87.10836 

7:52:39 AM CG C2 23675 72.25 28.55 G067542 25.92526 87.29363 

7:54:09 AM CG C1 19577 72.25 28.55 G067542 24.83792 86.76564 

7:54:12 AM CG C2 27821 72.25 28.55 G067542 24.81592 86.7205 

7:56:48 AM CG C1 15237 72.25 28.55 G067542 24.95233 86.92459 

7:57:09 AM CG C2 28092 72.25 28.55 G067542 26.32156 87.05604 

8:04:05 AM CG C2 32092 72.25 28.55 G067542 26.30038 86.77194 

8:04:32 AM CG C1 19674 72.25 28.55 G067542 26.3275 86.87326 

 

Table 2. M2I1NXASM (or inst1_2d_asm_Nx) is an instantaneous 2-dimensional hourly data ((GMAO), 2015) 

Name Dim Description Units 

DISPH tyx Zero plane displacement height m 

PS tyx Surface pressure Pa 

QV10M tyx 10-meter specific humidity kg kg⁻¹ 

QV2M tyx 2-meter specific humidity kg kg⁻¹ 

SLP tyx Sea level pressure Pa 

T10M tyx 10-meter air temperature K 

T2M tyx 2-meter air temperature K 

TO3 tyx Total column ozone Dobsons 

TOX tyx Total column odd oxygen kg m⁻² 

TQI tyx Total precipitable ice water kg m⁻² 

TQL tyx Total precipitable liquid water kg m⁻² 

TQV tyx Total precipitable water vapor kg m⁻² 

TROPPB tyx Tropopause pressure based on blended estimate Pa 

TROPPT tyx Tropopause pressure based on thermal estimate Pa 

TROPPV tyx Tropopause pressure based on EPV estimate Pa 

TROPQ tyx Tropopause specific humidity using blended TROPP estimate kg kg⁻¹ 

TROPT tyx Tropopause temperature using blended TROPP estimate K 

TS tyx Surface skin temperature K 

U10M tyx 10-meter eastward wind m s⁻¹ 

U2M tyx 2-meter eastward wind m s⁻¹ 

U50M tyx Eastward wind at 50 meters m s⁻¹ 

V10M tyx 10-meter northward wind m s⁻¹ 

V2M tyx 2-meter northward wind m s⁻¹ 

V50M tyx Northward wind at 50 meters m s⁻¹ 
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4. Methodology 

 

4.1. Preprocessing Dataset 

The LDS dataset provides lightning data a point 

information with a geo-locational accuracy of 100 m, at 

regular time interval, which necessitates interpolation for 

effective utilization in this study. On the other hand, the 

MERRA-2 dataset, having spatial resolution of 0.5 ° x 

0.625 ° and a temporal resolution of 1 hour, also require 

processing. 

 

Temporal Alignment- Unlike the LDS dataset, which 

provides point-based information about lightning strikes 

with an accuracy of 100 meters, the MERRA-2 dataset 

has a temporal resolution of 1 hour which is too coarse 

for capturing lightning activity. To make the datasets 

comparable, the temporal resolution of MERRA-2 was 

increased to 5 minutes using interpolation. This 

adjustment aligns the MERRA-2 dataset with the higher 

temporal resolution of the LDS data. The temporal 

resolution of the MERRA-2 dataset was adjusted for 

better compatibility with the LDS dataset. 

 

Spatial Alignment- To align MERRA-2’s lower spatial 

resolution with the higher resolution of the LDS dataset, 

spline interpolation was applied to MERRA-2 data. This 

method ensures smooth and accurate adjustments of 

spatial values to match the finer grid structure. The 

interpolation facilitates better compatibility and 

integration of the two datasets for spatial analysis. 

 

To align MERRA-2’s lower spatial resolution with the 

higher resolution of the LDS dataset, spline interpolation 

was applied to MERRA-2 data. This method ensures 

smooth and accurate adjustments of spatial values to 

match the finer grid structure. The interpolation 

facilitates better compatibility and integration of the two 

datasets for spatial analysis. (Laipelt et al. 2020), 

 

Critical Adjustments: 

Temporal Interpolation: Linear interpolation was 

employed to increase the temporal resolution of 

MERRA-2 from 1 hour to 5 minutes, providing a closer 

match to the temporal accuracy of LDS data. 

 

Spatial Interpolation: Spline interpolation was used to 

enhance MERRA-2's spatial resolution to align with 

LDS’s finer granularity. 

 

These adjustments were essential to harmonize the 

datasets, accurately capture lightning activity, and avoid 

pitfalls like poor model accuracy or low correlation in the 

results. By aligning the datasets effectively, the analysis 

ensures a more reliable evaluation of atmospheric 

conditions and their influence on lightning events. 

(Zhang, 2024) 

 

4.2. Analysis of the Correlation tests: 

4.2.1.  Chi Squared Test: 

From June 1,2022 to June 10, 2022 a total of 15,334 

lightning points was observed by LDS in the study area.  

 

We created a grid of the study area to map LDS data with 

the corresponding MERRA-2 data to obtain the 

parameters of the particular strike. Also, we made a non-

lightning points dataset to get an accurate correlation 

result. Lightning points obtained by mapping the LDS 

and MERRA-2 dataset had 15,334 rows and 22 columns 

including Longitude, Latitude, date, time and 18 

parameters (TQV, TQI, QV10M, PS, SLP, TO3, 

TROPPT, TROPPV, TROPQ, U10M, U2M, V2M, 

V10M, V50M, TROPT, T2M, T10M). Table 2. Non-

lightning dataset was prepared with the same layout 

because many results showed, as the sampling portion 

increases it leads to an increase in the sample size, and 

the result of the chi squared test also gradually increases 

and may lead to degraded results. For Chi Squared 

correlation analysis between LDS data and MERRA-2 

dataset data was divided into 10 equally spaced intervals 

with 95% confidence as it produced better results because 

increasing the intervals lead to occurrence of empty 

intervals. This became more frequent as the sample 

division increased 14. When the number of divisions is 

too small, then also it can lead to inaccurate analysis. 

 

Out of these 18 parameters, 10 best parameters were 

chosen on the basis of Chi Squared Test and their values 

as shown in Table 4 and figure 2. To avoid overfitting, a 

threshold was determined at the point where changes in 

the bar graph became minimal, indicating that further 

refinements would not significantly impact the results as 

shown with orange line in Figure 2. The parameters 

investigated included Total Perceptible Water (TQV), 

Total Ozone Column (TO3), Total Cloud Ice (TQI), Sea 

Level Pressure (SLP), Tropopause Temperature 

(TROPT), Surface Pressure (PS), Temperature at 10 

meters (T10M), Temperature at 2 meters (T2M), and 

Wind Speed at 50 meters (V50M). 

 

4.2.2 ANOVA, and Spearman-Rho correlation: 

ANOVA and Spearman-Rho correlation test were 

performed to get the most suitable correlated parameters, 

and the best 4 parameters extracted were; Specific 

Humidity (QV10M), Total Precipitable Water (TQV), 

Total Cloud Ice (TQI) and Surface Pressure (PS) as 

shown in Table 3 below. (Akhter, Roy, & Midya, 2024) 

(Han, Luo, Wu, & et , 2021) (Chakraborty et all. 2021). 

 

4.3. Finding the Best Model 

According to studies, Extra Trees performs well on 

complex datasets, particularly its ensemble approach that 

makes it efficient and presents an added randomness in 

the selection of splits. By randomly sampling subsets of 

the data and collecting the predictions of multiple 

decision trees, the risk of overfitting to specific patterns 

in the MERRA-2 and LDS datasets is reduced. This is 

important to maintain the validation of the model and 

their accuracy in predicting lightning events based on 

correlated parameters. 
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Table 3. Comparison between Selected Atmospheric Parameter 

 

Parameter Total Precipitable 

Water (TQV) 

 
 

Total Cloud Ice 

(TQI) 

 
 

Surface Pressure 

(PSFC) 

 
 

Specific 

Humidity 

(QV10M) 

 

Represents 
 

Total water vapor in 

the column 
 

Total ice in the 

cloud column 
 

Atmospheric 

pressure at the 

surface 
 

Water vapor at 

10m height 
 

 

Phase 

 

Vapor 

 

Solid (ice crystals) 

 

 

N/A 

 

 

Vapor 

 

Vertical 

Extent 

 

Entire atmospheric 

column 

 

Entire atmospheric 

column 

 

Near surface only 

 

Near surface 

only 

 

Physical        

Relevance 

 

 

Precipitation 

potential 

 

 

Cloud radiative 

properties 

 

 

Weather forecasting 

and dynamics 

 

 

Surface weather 

conditions 

 

Table 4. Chi Squared Test 

 

To ensure the results, after finding the best parameters, 

we used PyCaret classifier with 5-fold cross-validation 

which is an open-source, low-code machine learning 

library in Python designed to simplify and speed up the 

machine learning process. By automating many of the 

tasks involved, it helps manage and experiment with 

models more efficiently, making work faster and more 

productive. (Ali, 2020). 

 

To find the most suited model, the dataset used was the 

LDS dataset with corresponding atmospheric parameters 

from reanalysis MERRA-2 dataset and non-lightning 

points in target area for the targeted duration. Out of 15 

models compared by PyCaret Classifier, Extra trees gave 

the best results. 

 

However, upon examining the learning and validation 

curves, we observed that the model exhibits signs of 

over-fitting 

 

4.4. Using Bagging to Mitigate Overfitting 

To eliminate the signs of overfitting, Bagging was used. 

Parameter Chi-squared  

TQV 12,594.63 

TO3 8,601.15 

TQI 7,779.13 

QV10M 6,825.60 

SLP 6,614.18 

TROPT 4,990.00 

PS 4,732.94 

T10M 4,613.85 

T2M 4,058.93 

V50M 3,981.77 

U2M 3,342.45 

U10M 3,314.40 

TROPPT 3,134.42 

U50M 2,988.22 

TROPQ 2,911.65 

V10M 2,365.18 

V2M 2,281.47 

TROPPV 735.87 

 

 

 

Figure 2. Chi Squared Test 
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Bagging (bootstrap aggregating) is an ensemble method 

that involves training several models separately on 

different random parts of the data and then combining 

their predictions by either voting or averaging. This 

approach helps to improve accuracy and robustness by 

leveraging the strengths of each model. It can reduce the 

chance of an overfit model, resulting in improved model 

accuracy on unseen data. Multiple models trained on 

different subsets of data average out their predictions, 

leading to lower variance than a single model. 

 

Before applying Bagging, numerical features were 

preprocessed using Simple Imputer, and the dataset was 

split into training (80%) and testing sets (20%). The Extra 

Trees model was chosen as the base estimator for 

Bagging. After implementing Bagging with the Extra 

Trees model, the accuracy achieved was 0.8951. To 

ensure the reliability of the results, learning curves as 

shown in figure 3 and confusion matrix were analyzed 

and yielded satisfactory outcomes, confirming the 

effectiveness of the approach in managing over-fitting.  

 

4.5.  Model Validation 

As model was trained for the duration of 1 June 2022 to 

10 June to 2022, therefore to evaluate the performance 

of our Extra Trees model with Bagging for detecting 

lightning events, we conducted a validation test using a 

dataset of lightning occurrences provided by LDS 

network recorded on 8 June 2023. Our test dataset 

comprised a total of 350 data points within the targeted 

area covered by the bounding box in Bihar, Jharkhand 

and West Bengal, covering 86.68°E to 88.52°E in 

longitude to 24.70°N to 26.42°N in latitude 

 

Table 5- Results Overview 

Total Data Points: 350 

Correctly Marked Points (True Positive, 

TP): 
331 

Incorrectly Marked Points (False 

Negatives, FN):  
19 

 

Shown in figure 4(a) and figure 4(b). 

Based on these results, we calculated several 

performance metrics to assess the efficacy of our model. 

The metrics include accuracy and recall. These metrics 

are defined as follows: 

 

Accuracy: Accuracy measures the proportion of 

correctly identified points (both true positives and true 

negatives) relative to the total number of points. It 

provides an overall indication of the model's correctness. 

Accuracy=Correctly Marked Points/Total 

Points=331/350 

 

Recall: To calculate recall, we need to consider the 

following definitions: 

 

True Positives (TP): Points correctly identified as 

lightning events. 

False Negatives (FN): Points incorrectly identified as 

non-lightning events. 

 

Recall: Recall measures the proportion of actual 

lightning events that were correctly identified by the 

model. In our case, since the total number of false 

negatives (incorrectly marked points) is 19, the recall can 

be calculated as under: 

 

 
 

 

 
Figure 3. Learning Curve of Extra Trees with Bagging 
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Figure 4(a). Testing dataset where blue represents 

True Positive and purple represents False Negative 

with the buffer of 5.55 Km (Scale- 200 Km) 

 

 
Figure 4(b). Testing dataset where blue represents 

True Positive and purple represents False Negative 

with the buffer of 5.55 Km (Zoomed, Scale – 10 Km). 

 

4.6.  Intensity Categories Based on Daily Lightning 

Strike Frequency 

Data from Bhuvan ISRO was used to classify intensity 

which categorizes the Indian grid over 10 Km segments. 

The number of lightning marks in each grid is calculated 

for each day and categorize the intensity as follows Table 

5. 

 

To match it with our data we began by importing the 

lightning strike data. Following this, we established a 

grid of 10 km by 10 km over the area by calculating the 

boundaries of each cell within the grid using latitude and 

longitude increments. We then took a tally of the amount 

of lightning strikes in each of the grid cells on a daily 

basis and gave each level of lightning intensity a score. 

We applied specific threshold data to categorize the 

intensity as 'Very Heavy', 'Heavy', 'Moderate', 'Low', 

'Very Low', or 'No Lightning'. Lastly, we joined this 

classified intensity data to the original dataset in order to 

provide a more extensive overview of the lightning 

activity. 

Table 6. Intensity Classification according to Bhuvan 

(Source: https://bhuvan-app1.nrsc.gov.in/lightning/) 

Lightning 

Strikes per Day 

Intensity Category 

>500 Very High 

126-500 Heavy 

25-125 Moderate 

6-124 Low 

0-5 Very Low 

 

4.7. Correlational Analysis and Training the Model 
Various correlations tests were performed for example 

Kendall Tau and Pearson Correlation Test, leading to the 

conclusion that the parameters influencing lightning 

intensity differ somewhat from those affecting 

lightning/non-lightning conditions. From an initial set of 

18 parameters, specific humidity and temperature at 2 

meters were identified as the two most influential 

factors moderately affecting number of lightning 

strikes per day as shown in Figure 5(a) and Figure 5(b). 

 

 
Figure 5(a). Kendall Tau Correlation Test 

 

 
Figure 5(b). Pearson Correlation Test 

 

A Random Forest model was selected for its ability to 

capture complex relationships within the data. However, 

the accuracy achieved for predicting the lightning 

intensity with this model was somewhat lower i.e. at 

0.79. The corresponding confusion matrix is as follows: 

 

Confusion Matrix: 

 
However, to generate real-time intensity predictor with 

collaboration with LDS dataset, data from the Indian 

Meteorological Department (IMD) were integrated using 
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API to predict the lightning intensity as IMD provides 

API for relative humidity and temperature at 2m. 

 

Relative humidity can be converted in specific humidity 

using this formula 

 

x = 0.622 φ ρws / (ρ - ρws) 100% 

 

where, 

 x = specific humidity of air vapor mixture (kg/kg) 

 φ = relative humidity (%) 

ρws = density of water vapor (kg/m3) 

ρ = density of the moist or humid air (kg/m3) 

 

The study underscores the distinct impact of these 

parameters on lightning occurrence and highlights the 

effectiveness of the model in forecasting intensity, 

providing valuable insights for meteorological prediction 

and risk mitigation strategies. 

 

5. Results 

 

5.1. Correlation Analysis 

Chi-Squared Test: The Chi-Squared Test was employed 

to examine the correlation between lightning occurrences 

and various meteorological parameters. This analysis 

revealed significant correlations, identifying key 

parameters such as humidity, pressure, and precipitation 

as pivotal factors in predicting lightning events. The 

statistical significance of these parameters underscores 

their critical role in influencing lightning activity, 

highlighting their relevance for predictive modeling. 

 

ANOVA and Spearman-Rho Correlation: 

Complementary analyses using ANOVA and Spearman-

Rho Correlation further validated the importance of 

specific meteorological parameters. Among the 

parameters examined, specific humidity, total 

precipitable water, total cloud ice, and surface pressure 

emerged as the most influential. These findings reinforce 

the notion that these parameters are integral to 

understanding the relationship between meteorological 

conditions and lightning occurrences. The use of multiple 

analytical methods ensures a robust validation of the 

parameters crucial for lightning prediction. 

 

5.2. Machine Learning Model Selection 

Extra Trees Model: The Extra Trees model was selected 

for its robustness and ability to handle complex datasets 

effectively. This model excels in reducing overfitting, 

making it suitable for lightning prediction tasks. Through 

PyCaret's 5- fold cross-validation, the Extra Trees model 

demonstrated exceptional performance metrics. 

These high-performance metrics indicate that the Extra 

Trees model is highly effective in predicting lightning 

occurrences, with minimal risk of overfitting. The 

model’s accuracy and recall scores reflect its reliability 

and precision in predicting the lightning events in 

monsoon season of tropical region. 

 

Bagging Technique: To further address overfitting and 

enhance model stability, the Bagging (Bootstrap 

Aggregating) technique was applied to the Extra Trees 

model. This approach improved the model's 

generalization capability, resulting in acceptable 

accuracy. The application of Bagging was validated 

through learning curves and confusion matrix analyses, 

which confirmed the model’s enhanced ability to 

generalize across unseen data. This adjustment 

significantly improved the model’s stability and 

predictive performance. 

 

5.3. Intensity Prediction 

Intensity Classification: As per Bhuvan ISRO (Bhuvan, 

NRSC, ISRO, Government of India, n.d.)  lightning 

intensity is categorized into six levels ('Very Heavy', 

'Heavy', 'Moderate', 'Low', 'Very Low', 'No Lightning') 

based on daily lightning strike frequency. This 

classification framework provided a detailed and clear 

view of lightning activity within the study area. It enabled 

a more granular analysis of lightning intensity, offering 

insights into the varying intensities of lightning activity. 

 

Impact of Meteorological Parameters on Predicting 

Intensities: Specific humidity and temperature at 2 

meters were identified as significant predictors of 

lightning intensity. These parameters played a crucial 

role in differentiating between various levels of lightning     

activity. The relationship between these meteorological 

factors and lightning intensity underscores their 

importance in predicting and classifying lightning events. 

 

5.4. Random Forest Model for Intensity Prediction 
 

Model Performance: A Random Forest model was 

utilized to predict lightning intensity. This model 

integrated key meteorological variables such as relative 

humidity and temperature at 2 meters, achieving an 

accuracy of 79%. The Random Forest model’s 

performance demonstrates its effectiveness in real-time 

lightning intensity prediction, providing valuable insights 

into lightning behavior. 

 

6. Conclusion and Implications 

 

Lightning Detection Sensors (LDS) are currently in use 

across India, capable of detecting lightning events with 

over 98% accuracy within a 300 km radius for each 

sensor. While LDS offers significant support, but for the 

nations where there is limited or no LDS coverage, the 

incorporation of Artificial Intelligence and Machine 

Learning techniques could help in generating an early 

warning system. 

In conclusion, the integration of MERRA-2 data with 

Lightning Detection System (LDS) data, alongside the 

application of advanced predictive models like Extra 

Trees with Bagging, demonstrates significant potential 

for enhancing lightning prediction with 89.51% accuracy 

within the targeted area spans from 86.68°E to 88.52°E 

in longitude to 24.70°N to 26.42°N in latitude which can 

be further enhanced by taking LDS data for the different 

regions across the globe to develop an early warning 

lightning prediction system. This combined approach 

leverages the strengths of both data sources and 

modelling techniques to produce a robust forecasting 

system with high prediction accuracy. 
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To enhance the reliability and effectiveness of lightning 

prediction models, incorporating insights into lightning 

intensity is crucial. The Random Forest classifier model, 

achieved 79% accuracy, underscores the importance of 

these insights for developing a powerful early warning 

system. By integrating MERRA-2 dataset with LDS 

dataset and implementation of this research, we can 

create highly effective early warning systems, especially 

in regions with sparse or no LDS coverage. This 

integrated approach represents a significant advancement 

in lightning prediction, leading to improved 

preparedness, more accurate alerts, and ultimately, 

greater public safety. 
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