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Abstract: Cashew plantations generate significant interest in Benin due to their high socioeconomic value for the 

population. A thorough understanding of the spatial distribution of these plantations is crucial for comprehending their 

environmental and socioeconomic impacts. In this study, various types of multi-sensor imagery were compared to assess 

each sensor's capabilities in mapping plantation areas. The study was conducted in the Savè commune, a major industrial 

cashew-producing region. Multispectral sensors from Landsat-8 Operational Land Imager (OLI), Sentinel-2A, and UAV 

multispectral platforms, along with ground surveys, were fused and classified using the Random Forest algorithm. The 

study results allowed for the assessment of uncertainties associated with different platforms in detecting cashew 

plantations in the test area. Classification using Random Forest algorithms on UAV, Sentinel, and Landsat platform 

images yielded overall accuracies of 83%, 65%, and 48%, respectively. Producer and user accuracies were 94% and 75% 

for the UAV platform, 98% and 71% for the Sentinel platform, and 91% and 77% for the Landsat platform in cashew tree 

detection. This study demonstrates the complementarity among various platforms in detecting and mapping cashew 

plantations. 
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1. Introduction 

 
The cashew tree is a cash and export crop of significant 

importance in West African countries, including Benin. In 

Benin, cashew ranks as the second agricultural export 

product after cotton. Cashew nut exports have experienced 

substantial growth, increasing from 36,487 tons of raw 

nuts in 2001 (PAC/DCM/SESP, 2009) to 146,332 tons in 

2011 (ACA 2012). Cashew represents 8% of the total 

export value in 2008, contributing to 7% of the agricultural 

GDP and 3% of the national GDP (Tandjiékpon 2010). 

 

However, the lack of accurate and precise information on 

forest resources poses a significant obstacle to adaptive 

and effective plantation management, hindering timely 

decision-making. Two crucial needs arise to address this 

challenge: firstly, the development of precise inventory 

systems that spatially assess plantation occupancy and 

other ecosystem services related to the plantation; 

secondly, promoting the use of these systems to improve 

carbon stock modeling by these ecosystems. The challenge 

faced by managers is to ensure integrated and sustainable 

management of these ecosystems. To address these 

conflicting expectations, forest managers require 

comprehensive, precise, geolocated, up-to-date, and cost-

effective information. Forest inventories primarily aim at 

planning management units (Power and Gillis 2006) and 

serve multiple resource management objectives. However, 

the spatial resolution and attributes of polygons interpreted 

from conventional photographs are often insufficient to 

support planning, management, and investment decisions 

necessary for improving the competitiveness of the 

forestry sector (Queinnec et al. 2021). 

 

There is limited knowledge and information on the 

distribution and status of plantations in Africa to support 

public policies in this domain. Currently, there is no 

regional plantation database, and envisioning such 

mapping using traditional field techniques is impractical. 

Spatializing these plantations is crucial for accurate 

resource estimation. Previous inventories relied on survey 

and point measurement techniques with drawbacks such as 

slow and costly implementation, difficulties in tracking 

evolving phenomena, and proven effectiveness over at 

least a quarter of a century (Saadou 1999). Moreover, 

forest plantation ecosystems play a key role in mitigating 

the adverse effects of climate change by absorbing carbon 

dioxide, a major greenhouse gas responsible for global 

warming. In Benin, knowledge about the biomass 

produced by this species is very limited. However, woody 

biomass provides valuable insights into the ecological and 

economic productivity of agroecosystems (Kémeuzé et al. 

2012). 

 

In forestry, a sensor's spatial resolution largely determines 

its utility for resource estimation. The main factors to 

consider are the nominal size of production units 

(production area, conservation area, agricultural land) and 

mappable topographical features (tree cover, mixed crops, 

and valid land use elements) that play a role in statistical 

estimates. However, satellite imagery seems promising for 

providing certain information requested by current and 

potential cashew producers, as well as forestry 

administration data. Generally, small areas are easier to 

study with high-resolution images due to the technical 
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capabilities of sensors to acquire timely images and lower 

associated costs. 

 

Drone and satellite systems have complementary features. 

This complementarity is even stronger with environmental 

monitoring satellites, providing highly accessible data and 

an observational scale complementary to drones (Alvarez-

Vanhard et al. 2021). On one hand, satellites cover large 

territories with periodic observations, while, on the other 

hand, drones provide a cost-effective solution to specify 

satellite observations with their Very High Spatial 

Resolution (VHSR) sensors and acquisition flexibility. 

However, the swath of UAV images depends on the flight 

altitude and directly influences image resolution, footprint, 

and the number of images needed to cover a study area at 

a given image overlap (Lisein et al. 2015). Drones have the 

disadvantage of having a smaller swath (a few km²), often 

due to their low energy reserves and regulations 

concerning safety and privacy. Therefore, for optimal 

altitude, a compromise between resolution and the 

maximum scanned area is required; lower flight altitudes 

result in higher image resolution and smaller scanned 

areas. On the other hand, the swath of low-resolution 

satellite sensors is much larger. MODIS (Moderate-

Resolution Imaging Spectro radiometer) can cover up to 

2,100 km. However, these images cannot capture 

topographic details to delineate production areas. 

Furthermore, each drone and satellite system have specific 

acquisition characteristics resulting from a compromise 

between resolutions (spatial, spectral, and temporal), 

swath, and signal-to-noise ratio (Alavipanah et al. 2010). 

 

The complementarities of scales have already been studied 

between satellite and/or airborne systems (Alvarez-

Vanhard et al. 2021; Zhang 2010), but few studies focus 

on evaluating these different technologies in estimating 

plantation areas, which show an interesting potential for 

synergies. In this study, we will analyze the capacity of 

different platforms (satellite and UAV) using a multi-

sensor approach with new remote sensing technologies 

(UAV, Sentinel, and Landsat) to propose a suitable 

methodology for delineating plots and characterizing 

forest plantations, facilitating the calculation of cashew 

plantation areas. To achieve this, we used data from 

various satellite platforms (Sentinel-2A and Landsat 8 

OLI) and a multispectral drone, following a multi-sensor 

approach. Object-based classification (for the drone) and 

pixel-based classification (for satellite images) using the 

Random Forest algorithm enabled us to map cashew 

plantations in our study area. The results were then 

validated based on ground data to identify the strengths 

and weaknesses of each platform's sensors and provide 

recommendations for their use. Finally, these findings 

were discussed to propose a suitable approach for forestry 

administration to integrate remote sensing data into 

reference data for agricultural statistics. 

 

2. Study Area      

 

The study was conducted in the Sudanian-Guinean zone, 

specifically in the municipality of Savè in the Republic of 

Benin (Figure 1). Savè municipality is located in the 

central part of Benin in the Collines Department, between 

7°41' and 8°20' north latitude and between 2°20' and 2°45' 

east longitude.  

 

It covers an area of 2228 km² and is divided into eight (08) 

districts, namely: Besse, Kaboua, Offe, Okpara, Sakin, 

Adido, Boni, and Savè (which is the district capital). The 

study area is bounded to the north by the Ouessè 

municipality, to the south by the Kétou municipality in the 

Plateau Department, to the west by the Glazoué and Dassa-

Zoumè municipalities, and to the east by the states of Oyo, 

Kwara, and Ogoun in the Federal Republic of Nigeria. 

Savè, the district capital, is located approximately 255 km 

from Cotonou. It is crossed by the National Roads RNIE 2 

and RNIE 5 (Savè - Oké-Owo).  

 

 
Figure 1. Location of area study 

 

3. Materials and methods 

 

Raster data 

The matricial data utilized in this study originated from 

various aerial platforms, including two different satellites 

and an Unmanned Aerial Vehicle (UAV) with spatial 

resolutions ranging from 0.5m (UAV) to 30m (Landsat). 

The three aerial images from distinct platforms were 

acquired under similar conditions within a three-day 

interval during a period of high pressure, ensuring 

favorable conditions for clear imagery. 

The DJI P4 Multispectral (Figure 2) UAV (wingspan: 350 

mm, weight: 1487 g, maximum flight duration: 27 

minutes, controlled takeoff, and vertical landing) was 

employed for data collection. It is equipped with a 

multispectral rotating camera featuring RGB, red, green, 

blue, near-infrared, and mid-infrared sensors tailored for 

data acquisition. Shutter speed and sensor sensitivity (ISO) 
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were manually selected based on brightness conditions. 

The images were automatically captured once the UAV 

The integrated autopilot system triggered the camera to 

cover the scanning area with a 75% overlap. The notable 

advantage of this sensor's images lies in their very high 

spatial resolution. However, a drawback is the smaller 

coverage area of these images, with a smaller swath (a few 

km), compared to LANDSAT and SENTINEL satellite 

images, which have swaths of 14400 km and 250 km, 

respectively reached its scanning area. 

 

 
Figure 2. UAV multispectral sensor 

 

The Sentinel-2 satellites provide high spatial resolution 

multi-spectral images, enabling the continuation of data 

collection from the Landsat and Spot missions while 

enhancing geometric accuracy for Landsat and 

repetitiveness for SPOT. Landsat 8 ensures continuous 

acquisition and availability of Landsat data. It employs a 

two-sensor payload, namely the Operational Land Imager 

(OLI) and the Thermal InfraRed Sensor (TIRS). These two 

instruments respectively capture image data for nine 

shortwave bands and two thermal bands. Landsat 8 

operates in the visible, near-infrared, shortwave infrared, 

and thermal infrared spectra. The methodology for the 

approach is shown in figure 3. 

 

Mapping Approach 

In summary, our mapping approach revolved around 

generating a comprehensive and integrated set of inputs 

from Landsat-8, Sentinel-2, and UAV (Figure 4). The 

imagery and preprocessed derivatives were compiled for 

analyses and classification. An assessment of the overall 

accuracy of the classifications was conducted. Merged 

imaging observations were introduced into a classifier to 

map the extent of plantations within the studied 

observation window. Special attention was given to 

studying the separability between plantations and other 

vegetation, as these classes often led to confusion.  

 

Training Data 

High-resolution UAV imagery, ground truth data, and 

high-resolution imagery from Google Earth Pro were 

combined to create the final polygons. Google Earth Pro 

contains chronological series of high-resolution data 

allowing temporal tracking of landscapes on respective 

dates. Polygons representing different land cover classes 

were meticulously digitized within the observation 

window. A range of plantation ages and landscape 

conditions (i.e., plot size, slope, distance from urban areas) 

were included to construct a robust validation dataset. 

 

 

Table 1. Characteristics of different images used for the study 

Platform Types of 

sensors 

Spatial 

resolution (m) 

Spectral band (µm) Acquisition 

date 

Soleil 

Az. Elev. 

P4 

MULTISPECTRAL 

Multispectral 0,5 Red    : 0,650 

Green        : 0,560 

Blue        : 0,450 

RedEdge: 0,730 

NIR          : 0,840 

RGB        : 16Mpx 

22/07/2023 ND  

SENTINEL 2-A Multispectral 10 

 

 

B2–Blue: 0,492 

B3–Green: 0,559 

B4–Red: 0,664 

B8–NIR: 0,832 

 

16/07/2023 ND  

LANDSAT 8 OLI Multispectral 30 B2 – Blue : 0,450 – 

0,515 

B3 – Green : 0,525 – 

0,600 

B4 – Red : 0,630 – 

0,680 

B5 – NIR : 0,845 – 

0,885 

21/07/2023 136.37° 48.03° 
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Figure 3. Methodology diagram 
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Sentinel (4328)  

  

Landsat(543)  

Multispectral (RGB)          Multispectral (Infrared) 

Figure 4. Colour composition and spatial resolution of the different platforms used 

 

The comparison of images from the three different 

platforms (Landsat, Sentinel, and UAV) yields two (02) 

observations. The first is related to spatial resolution. The 

Landsat image has a spatial resolution of 30 meters, 

implying a resolution three (3) times less precise than the 

Sentinel image and over thirty (30) times less precise than 

the UAV image. 

 

Image pre-processing 

The process involved geometric and radiometric 

correction of the matrix data. Radiometric correction 

aimed to eliminate pixel values not used absolutely but 

relatively. Regarding geometric correction, GPS data were 

utilized in conjunction with vector layers of road and 

hydrographic networks. Additionally, a digital terrain 

model was generated for ortho-rectification of drone 

images. 

 

Classification by object 

To perform object-based classification of UAV images, 

Definiens' eCognition software was utilized. The 

underlying concept of this software is that the semantic 

information needed to interpret an image is not represented 

in individual pixels but in meaningful objects and their 

mutual relationships. 

 

The segmentation process involves dividing an image 

(Figure 5) into uniform zones (homogeneous objects). It is 

the process of creating segments (representing objects) 

with similar characteristics (attributes). The object-based 

classification method implemented for this work is a 

supervised classification method based on training zones 

determined through photo-interpretation. The definition of 

the homogeneity criterion considers two parameters: color 

and shape. Color enhancement influences spectral values 

concerning shape in the homogeneity criterion (Akoguhi 

et al. 2022). The lower the color criterion, the less spectral 

homogeneity influences object generation. Shape 

considers two parameters: compactness and smoothness. 

This criterion is, in fact, an abstract value (ranging from 0 

to 1) that influences the size and shape of the object based 

on the weighting assigned to each parameter (Akoguhi et 

al. 2022) 
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Figure 5. Segmented image (Characteristics: Shape: 

0,4; Compactness: 0,5; Scale: 60)    

 

Choice of classes :  

The selection of thematic classes is a critical step that 

significantly influences the results. Indeed, the desired 

level of detail for extraction has a direct impact on 

sampling and the validation statistics obtained. The study's 

targeted objective is the identification of plantations, other 

vegetation, and cultivated lands. A set of indices, listed 

below, was also used to assist in the classification within 

the window. Indices calculated from reflectance data are 

less sensitive to image noise, geometry, and atmospheric 

attenuation, making them advantageous, compared to 

initial reflectance products, in some respects for mapping. 

This study employed the Normalized Difference 

Vegetation Index (NDVI; equation (1)) (Rouse et al. 1974; 

Tucker 1979), a useful measure of landscape greenness 

and vigor. The Normalized Difference Till Index (NDTI; 

equation (2)) was used for its sensitivity to residue and leaf 

moisture as well as crop management practices (Daughtry 

et al. 2005).  

(1) 𝑁𝐷𝑉𝐼 =
ρPIR−ρR

𝜌𝑃𝐼𝑅+𝜌𝑅
 

(2) 𝑁𝐷𝑇𝐼 =
𝜌𝑠𝑤𝑖𝑟−𝜌𝑠𝑤𝑖𝑟2

𝜌𝑠𝑤𝑖𝑟+𝜌𝑠𝑤𝑖𝑟2
 

 

The Random Forest algorithm was employed (Breiman 

2001) to classify remote sensing data for mapping the 

extent of plantations. Random Forest is a flexible and 

powerful non-parametric technique that has been recently 

implemented in numerous mapping applications across 

various studies, including crop mapping (Lawrence et al. 

2014; Watts et al. 2009), wetland mapping (Torbick and 

Salas 2015; Whitcomb et al. 2009), canopy height 

mapping (Wilkes et al. 2015), algae proliferation (Song et 

al. 2015), urban sprawl (Torbick and Salas 2015), biomass 

(Karlson et al. 2015), and various other thematic domains. 

 

The algorithm creates n trees, each associated with a 

sample of training data. Each tree then randomly selects m 

variables and combines them to create the best model. 

Finally, on new data, each tree predicts a class, and the 

model predicts the object's class based on a majority vote 

(Liaw and Wiener 2002). 

 

Whenever a node is split on variable n, the Gini impurity 

criterion for the two descendant nodes is lower than that of 

the parent node. Summing the Gini decreases for each 

individual variable across all trees in the forest provides a 

quick "importance" measure of the variable, which is often 

highly consistent with the permutation importance 

measure. A small value indicates that a node primarily 

contains observations of a single class. 

 

𝐺𝑚 = ∑ 𝑝𝑚𝑘
𝑘
𝑘=1 (1 − 𝑝𝑚𝑘)     

Où 𝑝𝑚𝑘  is the proportion of observations of training k in 

the same region m that belong to the kth class. 

The Gini index is commonly used to measure the purity of 

nodes. A small value indicates that a node predominantly 

contains observations from a single class; thus, the Gini 

index can be used to assess the importance of a particular 

split. 

 

 
Figure 6. Estimated average surface area per platform 

 

4. Results  

 

Area of classes detected per platform. 

The estimated areas of the land-use classes in the test area 

from the different platforms were extracted in order to 

compare the results (Figure 6). We note that the areas 

detected by the different platforms differ from one 

platform to another; the UAV platform detects a larger area 

of cashew plantation than the other platforms in our area 

of investigation, which are respectively around (8 ha) by 

the UAV; (6 ha) for Landsat; (4 ha) for Sentinel and 

(around 9 ha) observed in the field (Tracking). The results 

from these different platforms show that the UAV images 

are finer than the Sentinel and Landsat images, which 

confirms the classification results. This is due to the spatial 

resolution (Goudet 2008). 

 

Field surveys were employed to randomly sample three 

types of land cover classes (Cashew plantation, cultivated 

land, and other vegetation formations) for analyzing 

spectral characteristics. Spectral regions with a higher 

selection of bands are crucial for detecting and 

characterizing vegetation due to the distinctively low 

reflectance in the visible range and high reflectance in the 

near-infrared (NIR) range. Figure 7 reveals the spectral 

characteristics of cashew plantations and the stratum of 

other vegetation formations, which were generally similar 

and only differed in the infrared region reflectance, with 

cashew plantations having higher reflectance than the 

stratum of other vegetation formations (Yujia Chen and 

Tian 2020) across the three platforms used. In contrast, the 

spectral characteristics of cultivated lands differed, and 

their reflectance is lower in the near-infrared compared to 

other classes (Yujia Chen and Tian 2020). 
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Sentinel 2-A 

 
Landsat 8 

 

 
UAV 

Figure 7. Spectral profiles of thematic units determined 

globally from the different platforms (LANDSAT, 

SENTINEL and UAV) in the test area. The y-axis is the 

mean reflectance value.     
 

Classification, carried out through statistical analyses, was 

applied to the three classes (cultivated land, cashew 

plantations, and other vegetation formations) within our 

area of interest (Figure 7). Following the classification, 

results obtained with UAV imagery offer a clearer 

representation of reality compared to Sentinel and Landsat 

images. However, Sentinel images provide a better 

depiction of reality compared to Landsat images. Objects 

that are not visible in Landsat and Sentinel images become 

discernible, and object boundaries are more defined.  

 

Table 2. Quality assessment indexes for images 

classified by platform 

Platform Overall accuracy 

(%) 

Kappa index 

UAV 82,35 0,72 

SENTINEL 65,09 0,48 

LANDSAT 47,84 0,23 

 

The results of the classification evaluation using different 

platforms applied to the study area, comparing the ground 

truth of labeled test data with the output of the final map, 

are presented in Table 2. The confusion matrix of the 

supervised classification from UAV imagery reveals an 

overall accuracy of 82.35%, with a Kappa coefficient of 

0.72 (Table 2). The Sentinel 2 platform shows an accuracy 

of 65.09% and a Kappa coefficient of 0.48, while Landsat 

8 imagery provides an overall accuracy of 47.84% with a 

Kappa coefficient of 0.23. This demonstrates a superior 

performance in discriminating land cover classes with the 

UAV platform compared to the satellite platforms Sentinel 

and Landsat. However, several confusions occurred during 

the image classification process. With the UAV platform, 

the most significant confusions arising from supervised 

classification were noted between the stratum of other 

vegetation (0.42). As for the Sentinel platform, more 

confusions were observed at the level of the cultivated land 

class (0.24), and with Landsat images, confusions were 

observed at the level of cultivated land (0.27) and other 

vegetation formations (0.16).  

 

 
Figure 8. Sample of objects classified using images 

from different platforms 

 

Across all platforms, the cashew plantation class is well 

classified, with respective accuracies of 74.16 for UAV, 

70.65 for Sentinel, and 77.25 for Landsat (Table 3). This 

situation could be explained by an intraspecific variation 

in the spectral signature of the plantation class, which 

varies depending on their age and tends to be considered 

as the stratum of other vegetation formations by the 

algorithm. 

 

These results align with research conducted by (N’guessan 

et al. 2008) on the satellite remote sensing monitoring of a 

protected humid tropical forest subject to anthropogenic 

pressures in the classified forest of Haut Sassandra in Côte 

d'Ivoire. The confusion matrix highlighted the spectral 

overlap between cashew plantations and the stratum of 

other vegetation formations. For Landsat and Sentinel 

platforms, most pixels of the stratum of other vegetation 

formations were misclassified as plantations and vice 

versa.
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Table 3. Confusion matrix for images of classified platforms in the study area 

Type Cultivated land Cashew 

crop 

Others vegetation 

formations 

Commission User 

UAV 

Cultivated land 104 1 7 0,07 92,86 

Cashew crop 0 66 23 0,25 74,16 

Others vegetation 

formations 

11 3 40 0,25 74,10 

Omission 0,09 0,05 0,42   

Producer 90,43 94,28 57,14   

SENTINEL 2-A 

Cultivated land 53 1 12 0,19 80,30 

Cashew crop 17 65 10 0,29 70,65 

Others vegetation 

formations 

45 4 48 0,50 49,48 

Omission 0,24 0,01 0,08   

Producer 75,68 98,03 91,37   

LANDSAT 8 

Cultivated land 46 1 11 0,04 95,29 

Cashew crop 26 49 32 0,22 77,25 

Others vegetation 

formations 

43 20 27 0,24 75,29 

Omission 0,27 0,08 0,16   

Producer 72,94 91,76 83,13   

 

5. Discussion 

 

Characteristic features of Anacardium occidentale for 

identification on each platform (satellite and UAV) 

The comparative analysis of different platforms (UAV and 

satellite) allowed for the assessment of their performance 

in discriminating and characterizing various land cover 

types in our test area. This methodological approach 

provided an interpretation of the major land cover 

categories in the test zone. 

 

Overall, the spectral profiles of the three land cover types 

in our test area exhibit a distinct spectral behavior in the 

visible and near-infrared ranges on all platforms (satellite 

and UAV) used. Vegetated surfaces are characterized by 

low reflectance in the blue wavelengths, increasing in the 

green, and again decreasing in the red across images from 

all platforms. The dip in the curve of other vegetation in 

the near-infrared (NIR) band (735 nm) may be attributed 

to the combination of the average spectral signature of 

species in the other vegetation class, reducing reflectance 

in the NIR. 

Around 735 nm (NIR), the spectral signature curve of 

cashew plantations shows an increase in reflectance in the 

NIR wavelengths on satellite platforms. This NIR 

reflectance in cashew plantations is higher than the overall 

reflectance of the other vegetation class in the test area. 

However, on the UAV platform, the reflectance is lower in 

cashew plantations compared to the stratum of other 

vegetation in the NIR. 

 

Furthermore, the spectral signature curve of the stratum of 

other vegetation experiences a drop at a common point in 

the red band (660 nm), and the curve of Anacardium 

occidentale (cashew) exhibits a higher ascendancy than the 

stratum of other vegetation. Specifically, the spectral 

behavior of Anacardium occidentale stands out from other 

vegetation due to its higher reflectance compared to other 

plants, confirming the findings of (Deshayes 2008). 

Additionally, the reflectance of cultivated lands is lower in 

the green and NIR bands and higher in the red band 

compared to other classes, across all platforms (Yujia 

Chen and Tian 2020). 

 

In conclusion, the results of spectral signatures have 

helped determine and understand the spectral behavior of 

land cover units. They have supported the choice of classes 

in the channels of both satellite and UAV platforms.  

 

Evaluation of the performance of cashew plantation 

detection and area estimation 

The analysis of UAV imagery reveals an overall accuracy 

of 82.35% and a Kappa index of 0.72. This level of 

accuracy is significantly higher than the values provided 

by other platforms, Sentinel (65.09%) and Landsat 

(47.84%). These results align with (Kosal 2020), who 

obtained an overall accuracy of 80% and concluded that 

very high spatial resolution UAV images better capture 

spatial variability with higher dynamics in vineyard fields. 

(Matese et al. 2015) also found that UAV imagery is 

relevant for discriminating small variations in values 

(better radiometric discrimination) and small spatial 

structures (better spatial discrimination). 
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Furthermore, the identification of cashew plantation pixels 

in the cashew class (user accuracy) by the algorithm was 

almost similar across all platforms, approximately 77.25% 

for Landsat, 70.65% for Sentinel, and 74.16% for UAV. 

This suggests that increased spectral information can 

partly compensate for coarser spatial resolution (Yin et al. 

2023). However, Sentinel data, through the algorithm, 

showed other vegetation pixels misclassified as 

agricultural lands and cashew plantations to a lesser extent. 

This situation is due to fragmentation in certain small 

regions of the study area, causing satellite platforms 

(Landsat and Sentinel) to lose their effectiveness. Landsat 

and Sentinel-2 images cannot adequately represent the 

boundaries of smallholder cashew plantations, given their 

spatial resolution, which aligns with observations by (Yin 

et al. 2023) and (Wang et al. 2022) in their studies on a 

comparative approach of Sentinel 2 and Landsat 8 for 

mapping forest species. 

 

The overall pixel analysis of Sentinel and Landsat satellite 

platforms covering the study area reveals confusion 

between classes, primarily cashew plantations and the 

stratum of other vegetation, and to a lesser extent, with 

cultivated lands. This confirms observations by (Rege et 

al. 2022), suggesting misclassification by the Random 

Forest classifier used in land cover classification, utilizing 

cashew plantation pixels for pixels of other vegetation in 

the combined dataset of our area of interest. 

 

The high overall accuracy resulting from UAV imagery 

classification allows us to infer that UAV imagery has a 

strong detection capability, and UAV data would be highly 

suitable in complementarity for assessing the spatial 

distribution of land use types with satellite images to 

discriminate other land cover classes in a fragmented 

landscape. Additional sensors or images from higher 

resolution resources, such as UAV images, could enhance 

results by providing better spatial representation to 

discriminate plantations from the "other vegetation" 

stratum (Koskinen et al. 2019), including additional 

statistical information such as area. 

 

Moreover, plantation areas were underestimated by 

satellite platforms, approximately 6 ha for Landsat and 4 

ha for Sentinel, compared to UAV imagery, which 

estimated about 8 ha. Our on-the-ground investigations 

focused on tracking plantations, resulting in an observed 

area of 8.67 ha (approximately 9 ha) for cashew 

plantations. We conclude that the UAV platform provides 

an estimation of cashew plantation areas close to the 

observed reality on the ground. Despite similarities in user 

accuracy among different platforms, uncertainties related 

to spatial resolution affected overall accuracy and 

plantation area estimates in Landsat and Sentinel 

platforms. Certain portions of cashew plantation areas in 

fragmented zones were underestimated in Landsat and 

Sentinel images, potentially leading to errors in 

determining the total plantation area. 

 

The results of this study allow us to deduce, on the one 

hand, that the automation of cashew plantation detection 

using optical imagery may pose difficulties between the 

stratum of other vegetation and plantations because they 

are spectrally similar and challenging to distinguish using 

optical satellite imagery (Sentinel and Landsat). Although 

cashew plantations and other vegetation strata have similar 

spectral signatures, cashew trees are perennial plants, 

while the stratum of other vegetation is composed of 

various species with different characteristics (deciduous 

and evergreen species), with variable spectral signatures. 

On the other hand, the use of multi-resolution approaches 

and the integration of complementary data can contribute 

to improving the reliability of plantation area estimates 

through remote sensing. 

 

6. Suggestion 

 

To facilitate the discrimination of a species through remote 

sensing, we suggest the following points: 

• Utilizing multi-temporal data for classification. 

Increasing the number of dates, along with high-

quality images, should enable the acquisition of dates 

during very specific vegetation periods for the species. 

Other Sentinel-2 images from non-vegetation periods 

could assist in creating a mask for the species. 

(Immitzer et al. 2012) already emphasized the high 

potential of multi-temporal data for vegetation image 

classification. 

• Improving the quality of reference data (for model 

training and validation) based on a larger sample of 

ground-truth data. 

• Having access to multi-sensor data to combine 

different resolutions and spectral and spatial qualities 

would enhance the quality of segmentation and 

classification by associating all instantaneous 

information with the definition of a class. 

• Furthermore, the combination of various classifiers 

based on a priori knowledge could further enhance the 

method (Yangbo Chen et al. 2017). 

 

7. Conclusions 

 

In this study, we analyzed the uncertainties associated with 

the detection of cashew plantations and explored how 

different remote sensing platforms can complement each 

other in detecting and estimating the areas of cashew 

plantations. The study successfully identified the species 

in the test area, leading to a good overall accuracy for the 

UAV platform compared to satellite platforms (Sentinel 

and Landsat). However, there is potential for further 

improvement, especially for the satellite platform, which 

could benefit from the use of validation data with higher 

error estimates. The classification results allowed us to 

discriminate the Anacardium occidentale species in the 

study area across various aerial imaging platforms and 

estimate its area. 
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