
Journal of Geomatics     Vol. 18, No. 1, April 2024 

© Indian Society of Geomatics    

Modelling wildfire risk using GIS and Analytical Hierarchy Process (AHP) in Aberdare 

afromontane forest ranges, Kenya 
 

John Ngugi Kigomo* and Margaret Nduta Kuria 

Kenya Forestry Research Institute, P.O. Box 20412-00200, Nairobi 

*Email: jkigomo@kefri.org 

 

(Received on 6 December 2023; in final form 29 December 2023) 

 

DOI: https://doi.org/10.58825/jog.2024.18.1.131 

Abstract: The knowledge of wildfire risk is crucial to sensitize and create awareness on fire prevention strategies and 

mobilization of resources to counter the spread after detection.  This study was undertaken to determine the most important 

environmental and anthropogenic factors associated with wildfire risk in Aberdares ranges. An integrated participatory 

decisions and geospatial analysis was used. A pair wise comparative analysis of seven factors namely: proximity to roads, 

proximity to farming areas within the forest, mean precipitation, elevation, slope, land cover and NDVI was undertaken 

to attribute weight of each factor in relative to the other though Analytical Hierarchy Process (AHP). A wildfire risk 

equation was developed using the criteria weights of respective factors and risk map developed using QGIS version 3.16. 
Results indicated that land cover (0.39) and NDVI (0.23) were the most important factors in developing wildfire risk 

maps while proximity to roads (0.04) was the least. Wildfire risk maps shows that Aberdare ranges is within low (43%) 

and moderate (30%) risk zone and the area occupied by high and very high zones is 13% and 4 % respectively. The study 

recommends testing the applicability of developed method in other areas with different climatic and land cover 

characteristics. 
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1. Introduction 

 

The use of seasonal fire cycles in rangeland and forest 

landscape management has been recognized in the studies 

of Poletti et al., (2019). However, recent changes in the 

climate and accelerated human activities  has resulted to 

transformation of traditional fire regimes (Bar et al., 2021). 

According to Chen et al., (2020), over 30% of the world’s 

land surface area is experiencing substantial fire 

incidences with the tropics and sub-tropics having high fire 

occurrences (Andela et al., 2016). Although fire 

occurrences have decreased over the last few decades in 

many regions, In Kenya, high wildfire incidences have 

been reported mostly due to illegal activities within 

protected areas of Kenya (Poletti et al., 2019. Furthermore, 

studies of   Maukonen et al., (2016), identified fire and 

poor fire management as a major cause of forest 

unproductivity in Kenya due to destruction of productive 

stages of vegetation such as young and vulnerable 

seedlings and saplings. 

 

The knowledge of pre-fire occurrence is crucial to 

sensitize and create awareness to the local stakeholders 

and mobilize resources to counter the spread after early 

detection. The cyclic occurrence of wildfires reflects a 

complex connection between weather, climate conditions 

and ecosystem processes. For example, studies of Fasullo 

et al. (2018) shows close relationship of fire frequency and 

spatial extent to climate variability of seasonal and decadal 

time series. Although many approaches have been used in 

predicting wildfire risk, Geographical Information 

Systems (GIS) and remote sensing techniques have been 

widely used through integration of social and 

environmental factors (Vallejo-Villalta et al., 2019). Some 

the key factors which contribute to fire risk include 

topography (elevation, slope and aspect), vegetation (fuel 

load, fuel moisture, vegetation structure and age), weather 

(precipitation, wind speed, relative humidity) and human 

related factors such as distance from road or settlement and 

human population density (Costafreda-Aumedes et al., 

2017). In addition, some studies have utilized vegetation 

cover metrics and indices such as normalized difference 

vegetation index (NDVI), enhanced vegetation index 

(EVI); climate parameters such as land surface 

temperature, precipitation, and wind speed and fire 

weather index (FWI) (Vallejo-Villalta et al., 2019) as 

potential for mapping and modelling wildfire risk. 

 

The increasing wildfires has triggered more studies on 

mapping and prediction to guide integrated fire 

management in many countries. However, a review of 

Costafreda-Aumedes et al. (2017) on modelling fire risk 

found only few studies had focused on the areas with high 

wildfire occurrence especially Sub-Saharan Africa as 

opposed to many research studies focusing on North 

America and Europe. Some fire risk studies in Africa have 

mainly focused on protected savanna ecosystems 

(Molaudzi and Adelabu, 2019) and little research in East 

African protected mountain areas which is the focus of this 

study within the Aberdare ranges located in central 

highlands of Kenya. Aberdare ranges is one of the five 

main water catchments in Kenya. Others include Mt. 

Kenya, Mt. Elgon, Mau and Chereng’ani Hills. It provides 

water that feed into four out of Kenya’s six major drainage 

basins namely; Ewaso Nyiro, Lake Naivasha, Athi and 

Tana River basins. The Tana and Athi catchment area 

supplies all the water to Nairobi, the capital City of Kenya 

with over 5 million people through Sasumua and Ndakaini 

dam. Together with Mt Kenya, they contribute 70% of the 

country’s hydropower produced by Tana River (Kenya 
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Forest Service, 2010). Beside the enormous contribution 

to the economy of the country, Aberdare ranges has been 

faced with frequent forest fires which has had negative 

impacts not only to the ecosystem functions but also the 

livelihoods of the local community living adjacent to the 

forest (Kenya Forest Service, 2010) 

 

Several methods have been used in generating and 

validating wildfire risk maps. This includes Multi Criteria 

Decision Analysis (MCDA) in combination with GIS 

(Akay and Erdoan, 2017), logistic regression (Milanovi´c 

et al., 2020), fuzzy logic and machine learning techniques 

(Kim et al., 2019). Studies in Afromontane forests within 

southern Africa have not been addressed despite 

environmental damages due to wildfires. The choice of 

particular method depends with availability of data, 

application of outputs by the stakeholders and  the skills of 

developing the fire risk maps and models. Most of the 

complex machine learning and logistic regression methods 

require bulk database to run effectively and give a robust 

fire risk map. In the absence of comprehensive database in 

Kenya, this study used Analytical Hierarchy Process 

(AHP) in combination with GIS, which is an advanced 

Multi-Criteria Decision Analysis (MCDA) technique in 

mapping fire risk. The most important aspect of AHP is the 

active involvement of specialist practitioners and 

stakeholders in ranking and discussion of various factors 

through an organized order (Van Hoang et al., 2020). The 

study objectives included (1) to determine the most 

important factors associated with wildfire risk based on 

integrated participatory decisions and spatial analysis 

within GIS environment in Aberdare ranges and (2) to 

develop wildfire risks map to assist stakeholders in 

prevention and management of wildfires in Aberdares 

ranges.  

 

2. Materials and Methods 

 

2.1 Study Area 

The study was done in Aberdares Ranges located in the 

central highland within four Counties of Kenya; namely 

Kiambu, Murang’a, Nyeri and Nyandarua. The area 

comprises of ranges covered mainly by forests, grassland 

and moorland. Administratively it’s managed as forest 

reserves (149,822 ha) by KFS and a National Park (76,700 

ha) by KWS (KFS 2010). (Figure 1). The surrounding land 

use is mainly annual and perennial crop production. It’s 

located along the equator between 36o30’ E, 0o 05’ S and 

36o 55’E, 0o 45’S. The altitude ranges from 2000 m to its 

highest peak of 4000 m above sea level. The major 

vegetation categories in Aberdare forest, are primarily 

described through variation in structure and composition 

along climatic and altitudinal gradients. 

 

The four broad vegetation zones already documented by 

Kenya Forest Service (2010) include: (i) Montane humid 

forest mostly found at lower altitudes east side of the forest 

mainly dominated by the pioneer species (ii) Sub-montane 

forest is found at mid elevations (iii) Xeromorphic 

evergreen forest, which is located in the dry north and 

north-western slopes of the Aberdares forest and (iv) sub-

alpine vegetation mostly found at the moorlands at an 

altitude of 3,300 m and above. Furthermore, Aberdare 

ranges is a designated world heritage site with a rich 

diversity of fauna and flora. Recent estimates suggest that 

the range is a habit of over 50 species of mammals, 270 

bird’s species (Massey et al., 2014) and more than 1260 

higher plants species (Kipkoech et al., 2020).  

 

2.2 Data sets and processing to develop wildfire risk 

maps 

Based on literature and local landscape characteristics as 

applied by Akay and Erdoan, (2017), various factors were 

used to develop fire risk maps within Aberdare ranges. 

This included anthropogenic factors, topography, 

meteorological data and vegetation variables. The data was 

sourced from various sources as shown in Table 1. 
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Figure 1. Location of Aberdare forest ranges in Kenya 

Table 1. Data set formats and sources used in this study 

Product Format Remarks 

Socio-economics 

PELIS data from 2012 to 2021 Shapefile Buffered by distance 

Roads and nature trails network Shapefile Used road network from KFS and Kenya 

Rural Roads Authority (KeRRA), merged 

and buffered 

Fire occurrence data (Validation of predicted maps) 

VIIRS active fire data (January (2012 – 

December 2021) 

Shapefile/points Acquired from Fire Information Resources 

Management; Was used for validation 

Forest fire records Hard copies/digital Digitized then processed and used to select 

satellite data 

 Meteorological data 

Precipitation Raster Rainfall data Interpolated from ten forest 

stations 

Topography 

Elevation Raster Extracted from Shuttle Radar Topography 

Mission (SRTM) and clipped to study area  

Slope Raster Processed from Digital Elevation Model 

(SRTM) 

Vegetation 

Land cover 2016 Raster Reclassified from the national land cover 

maps used in reporting forest reference level 

under REDD+ schemes. 

Mean NDVI (2012-2021) Raster Mean NDVI Processed using Google Earth 

Engine (GEE) platform  

 
2.2.1 Anthropogenic factors 

Various studies have shown that anthropogenic factors are 

important in predicting wildfire risk. For example, 

proximity to roads, rivers and settlement areas have been 

considered according to Van Hoang et al., (2020); 

Adaktylou et al., (2020). The roads and nature trails 

provide easy access for tourists and timber operations 

within the national park and forest reserves respectively. 

This can potentially influence the risk of wildfires.  

 

The local community surrounding Aberdares are mostly 

farmers. Although cultivation within the forested areas has 

been practiced for many decades, Plantation Establishment 

and Livelihood Improvement Scheme (PELIS) scheme 

was introduced by the government to help increase forest 

cover and restore degraded forests in the country. 

Consequently, the livelihood of Forest neighbouring 

communities (FAC) is improved since they are allocated 

small pieces of land upon which they plant seedlings in 

consultation with technical officers, while they practice 

subsistence farming. The planted seedlings are supposed 

to be maintained while the farmer is tending to the crops 

until the seedlings are tall enough forming closed crown 

which makes cultivation impossible. Whereas this has 

been practiced in many forest stations, it can potentially be 

a source of ignition during preparation of farms and 

harvesting crops. In this study, only proximity to roads and 

PELIS were considered in their contribution to wildfire 

risk.  

The road network used in this study was downloaded from 

open street map (OSM) and a shapefile of Aberdare ranges 

used to clip the roads within the study area. Google earth 

was used to digitize natural trails and undertaking ground 

truthing of the roads network. Using QGIS version 3.16, 

vector data of the roads network and nature trails were 

loaded and a buffer created at 100m, 200m, 250m 500m 

and 1000m using a buffer tool (Figure 2).  

In preparing PELIS layers, a handheld GPS was used and 

all forest stations within Aberdare ranges were visited and 

sub-compartments which have had PELIS since 2012 were 

identified and coordinates taken around the areas. The 

coordinates were then transferred to QGIS and polygons 

created to depict PELIS areas. Polygons within 200 m 

were merged for ease of buffering. Buffers was created 

below 200m, 200-400m, 400-600m, 600-800m and above 

800m.     

 

2.2.2 Topography 

Elevation and slope influences fire behavior and response 

(Van Hoang et al., 2020). Some studies have shown that 

within high mountains, upper elevations are generally cold 

accompanied by low oxygen and relatively high wind 

speed (Adaktylou et al., 2020). Whereas, other studies 

have shown that higher elevations are more remote and 

have difficult terrain for early detection of wildfires (Abdi 

et al., 2018). In this regard, elevation can be either 

proportional or inversely proportional to fire risk 

depending with local conditions.  On the other hand, in 

steep slopes areas fire tend to spread faster than in gentle 

slopes (Abdi et al., 2018).  

 

The Shuttle Radar Topography Mission (SRTM) digital 

elevation model at a resolution of 30m corresponding to 

Aberdare ranges was downloaded with SRTM downloader 

plugins in QGIS 3.16 environment and processing of slope 

and elevation was undertaken by profile tool plugin. The 
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resulting product of elevation and slope was categorized 

into five classes based on the Aberdares ranges terrain 

(Figure 2) 

 

2.2.3 Meteolorogical data 

Precipitation and temperature are the major weather and 

climatic factors affecting ignition and spread of fires due 

to their influence on growth of vegetation, soil moisture 

and humidity (Guo et al., 2016). However, studies of Kim 

et al., (2019) indicated that temperature fluctuation in the 

tropics is rather small compared to other regions for any 

significant influence. Hence, temperature was not 

considered in this study. Monthly rainfall data and the GPS 

coordinates of the rain gauge was collected from Kenya 

Meteorological Department (KMD) stations and rain 

gauge records within Aberdare ranges from January 2012 

to December 2021. Mean annual rainfall from all the 

stations was calculated. An MS-Excel file of the data was 

created and converted to csv file which was later converted 

to shapefile using QGIS 3.16 platform.  The mean annual 

rainfall was interpolated using inverse weighted 

interpolation method in System for Automated 

Geoscientific Analysis (SAGA) GIS software and raster 

maps was created using QGIS. The final product was 

categorized into five classes based on the potential fire risk 

levels (Figure 2) 

 

2.2.4 Vegetation variables 

The main factors for evaluating fire fuels at a landscape 

scale include land cover and vegetation indices according 

to studies of Abdi et al., (2018). The land cover maps were 

obtained from the national land cover maps used in 

reporting forest reference level under REDD+ schemes. 

The land cover/ use maps have been developed every 2 

years from 1990 to 2022 using Landsat imageries and other 

auxiliary data. The land cover maps have 10 classes 

namely dense forest, moderate forest, open forest, wooded 

grassland, open grassland, perennial cropland, annual 

cropland, vegetated wetland, open water and otherland. 

Using QGIS version 3.6, the land cover data set for 2016 

that is approximately at the middle of the fire duration 

under study was reclassified into five classes namely dense 

forest, open forest, wooded grassland, open grassland and 

cropland taking into consideration of the possibility of fire 

ignition in the respective land cover types. The reclassified 

map was clipped to the area of interest using Aberdare 

ranges shapefile (Figure 2) 

 

Concerning the vegetation condition, Normalized 

Difference Vegetation Index (NDVI) has been used widely 

to depict vegetation vigour and flowering patterns (Van 

Hoang et al., 2020). It’s a measure of vegetation greenness 

with values ranging from -1.0 to 1.0. The negative values 

tending to 0 mean drying or possibly lack of healthy floral 

parts. Values close to 1 indicate the highest possibility of 

healthy and green canopy vegetation (Adaktylou et al., 

2020). In this study, NDVI was computed using Landsat 

imagery that has a 30-m spatial resolution using equation 

1 and classified into five classes in Google Earth Engine 

(GEE) platform (Figure 2) 

 

 

Figure 2. Some of the GIS processed layers of independent factors used in generating wildfire risk maps. This 

include (a) land cover (b) elevation (c) mean annual rainfall (d) NDVI (e) slope and (f) section of buffered road 

network within Aberdare ranges 
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Landsat images were processed within the dry months of 

the years normally from January to March and before 

major fire events guided by local fire records to depict true 

condition of the vegetation for the years between January 

2012 and December 2021. The mean value of the NDVI 

products was used in modeling as proposed by Adaktylou 

et al. (2020). 

 

The GIS layers used in generating wildfire risk maps were 

processed before the analysis of AHP as shown in Figure 

2. 

 

REDedNearInfrar

REDedNearInfrar
NDVI




    Eq- 1 

 

2.3 Determining the weights of factors contributing to 

wildfire risk in Aberdare Ranges 

A pair wise comparative analysis of all the seven factors 

namely proximity to roads/nature trails, proximity to 

PELIS, mean precipitation, elevation, slope, land cover 

and NDVI was examined to attribute weight of each factor 

in relative to the other factors. Experts and relevant 

stakeholders within the study area were involved through 

informal discussions in assigning a weight to each factor 

according to its weight in fire initiation and spread. This 

was accomplished by providing stakeholders with all the 

seven factors and requesting them to list and rank the main 

causes of wildfires within their locality in the order of 

importance. A method proposed by Saaty, (1977) and 

applied in the studies of Lamat et al., (2021) was used to 

compare all factors against each other based on their 

importance in a scale of 1 to 9.  The value 1 representing 

equal importance between two factors being compared 

while value 9 representing extreme importance for the 

values being compared. Afterwards the final qualitative 

weights were derived by combining the outputs from 

stakeholders to a harmonized list. While assigning the 

weight of each factor, literature reviews and researcher’s 

knowledge of the study site was also taken into 

consideration. The standardized relative weight was 

calculated by dividing each element of the pairwise matrix 

by the total summation of each column. The higher the 

weights, the more was the influence of the parameters on 

the wildfire risk based on its relative importance. Then 

each element within the matrix was divided by its total row 

to generate a standardized pairwise comparison matrix. 

The criteria weight for each factor was determined by 

mean of normalized values for each factor. Using QGIS 

software, the raster layers of all the factors combined with 

estimated weights were loaded and the wildfire risk 

developed (Van Hoang et al., 2020) using equation 2 

 

)
1

( ixn
i iwFR  

    Eq- 2 

where  

 FR is the risk of wildfire; wi is the weight of factor (i);  xi 

is the factor (i) while  n represent the number of factors 

(from 1 to n).  

 

A consistency ratio (CR) was evaluated using Equations 

(3) and (4) in order to assess the reliability of the process 

with the overall aim of minimizing the bias of the model.  

RI

CI
CR     Eq- 3 

1

max






n

n
CI


   Eq- 4 

where CR represents the consistency ratio. This is derived 

by dividing CI (consistency index) and RI (random index) 

in Equation (3) while in Equation 4, λmax represents 

maximum value achieved by the mean of dividing the sum 

of the weights, and n is the number of criteria. After 

calculation, the CR values of 0.10 and lower was 

considered as acceptable limits (Lamat et al., 2021). 

 
2.4 Validation of wildfire risk maps 

Moderate-Resolution Imaging Spectroradiometer 

(MODIS) near active fire data (Parajuli et al., 2020) and 

burnt area products (Henry et al., 2019) have been used in 

validating fire risk maps. However, this study utilized 

Visible Infrared Imaging Radiometer Suite (VIIRS) active 

fire data to evaluate the predictive power of the fire risk 

maps produced using seven independent variables. The 

VIIRS is superior to MODIS in detection of small fires 

which are common in Kenyan forest ecosystems, since the 

thermal band of VIIRS which has a 375 meters resolution 

per pixel compared to MODIS which has 1,000 metres 

resolution per pixel (Strydom & Savage, 2016). The VIIRS 

data has information on latitude, longitude, date, time, Fire 

Radiative Power (FRP) and confidence level (Giglio, 

2018). The VIIRS reference fire data was accessed freely 

from NASA Fire Information for Resource Management 

System (FIRMS) at 

https://firms.modaps.eosdis.nasa.gov/download/. From 

the website, the date request was created by drawing a 

polygon within a representative area of Aberdare ranges in 

the base map. The data request was limited from January 

2012 to December 2021 while the data format was comma-

separated text (.csv). Figure 3 and 4 shows the monthly and 

yearly total fire incidences recorded by VIIRS satellite 

sensors. The derived fire points were overlaid on the final 

risk zone map and the degree of concurrence of the 

observed fire occurences with the predicted risk levels 

from our results was calculated as percentages.  

 

After validation, the respective area of the various wildfire 

risk levels was evaluated using spatial analyst tool within 

QGIS version 3.16. The respective areas were further 

imported to Microsoft Excel and used in the calculation of 

the risk zone percentage using Equation 5.  

 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑜𝑓 𝑟𝑖𝑠𝑘 𝑎𝑟𝑒𝑎(%) =
𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑎𝑟𝑒𝑎 

𝑇𝑜𝑡𝑎𝑙 𝑎𝑟𝑒𝑎
∗  100

 Eq- 5 
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Figure 3. Total number of monthly fire incidences from 2012 to 2021 derived from VIIRS satellite fire data 

 

 
Figure 4. Total number of cumulative yearly fire incidences from 2012 to 2021 derived from VIIRS satellite fire 

data  

 

3. Results 

 

Table 2 shows a pairwise comparison matrix of potential 

independent variables contributing to wildfire occurrences 

based on their importance on a scale of 1-9. The Analytical 

Hierarchy Process indicated that vegetation-based factors 

namely land cover (0.39) and NDVI (0.23) were highly 

rated in causing wildfires whereas anthropogenic factors 

namely proximity to PELIS (0.05) and roads (0.04) were 

least (Table 3). The consistency ratio was calculated as 

0.06 indicating a consistency of decision-making process 

of various weights attributed to the independent factors. 

The weight derived from normalized pairwise matrix was 

used to generate a wildfire risk prediction model. The 

wildfire prediction model shown in Equation 7 was used 

to generate wildfire risk map with five classes (Figure 5).  

Above 70% of Aberdare ranges area is within low (43%) 

and moderate (30%) risk zone. Whereas less than 20% of 

the area is within the high (13%) and very high (4%) areas 

(Table 4). The Wildfire risk prediction model (FR) is 

estimated as 

 

RdPELISSlope

ElevNDVILCFR

*04.0*05.0*07.0

*10.0Pr*12.0*23.0*39.0




 eq-6 

where, LC is Land cover, Pr is precipitation, elev is 

elevation, PELIS is Proximity to PELIS and Rd is 

proximity to roads. 
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Table 2. Pairwise comparison matrix of potential factors contributing to fire occurrences 

Factor 

Land 

cover NDVI Precipitation Elevation Slope 

Proximity 

to PELIS 

Proximity 

to Roads 

Land cover 1 3 4 5 5 7 7 

NDVI 0.33 1 3 4 3 5 6 

Precipitation 0.25 0.33 1 3 3 2 2 

Elevation 0.20 0.25 0.33 1 3 3 2 

Slope 0.20 0.33 0.33 0.33 1 2 2 

Proximity to PELIS 0.14 0.20 0.50 0.33 0.50 1 2 

Proximity to Roads 0.14 0.17 0.50 0.50 0.50 0.50 1 

Sum 2.27 5.28 9.67 14.17 16.00 20.50 22.00 

 

Table 3. Normalized pairwise matrix using Analytic Hierarchy Process (AHP) 

Factor 

Land 

cover NDVI Precipitation Elevation Slope 

Proximity 

to PELIS 

Proximity 

to Roads 

Criteria 

weights 

Land cover 0.44 0.57 0.41 0.35 0.31 0.34 0.32 0.39 

NDVI 0.15 0.19 0.31 0.28 0.19 0.24 0.27 0.23 

Precipitation 0.11 0.06 0.10 0.21 0.19 0.10 0.09 0.12 

Elevation 0.09 0.05 0.03 0.07 0.19 0.15 0.09 0.10 

Slope 0.09 0.06 0.03 0.02 0.06 0.10 0.09 0.07 

Proximity to PELIS 0.06 0.04 0.05 0.02 0.03 0.05 0.09 0.05 

Proximity to Roads 0.06 0.03 0.05 0.04 0.03 0.02 0.05 0.04 

 

Table 4. Wildfire risk classes showing area and respective percentages 

Wildfire risk class Area (Ha) Percentage (%) 

Very low 20,891.96 8.9 

Low 102,132.07 43.4 

Moderate 70,851.23 30.1 

High 30,905.57 13.1 

Very High 10,330.91 4.4 

Total 235,111.74 100 

 

Validation of the developed wildfire risk map using 

(VIIRS) active fire data indicated that 60% of the fire 

points overlaid fell on the high and very wildfire risk 

zones, 21% in the moderate zone and below 20% were in 

the low and very low zone (Figure 6)  

 

4. Discussion 

 

In this study, prediction of wildfire risk in relation to 

environmental and anthropogenic factors was undertaken 

using a case of Aberdare ranges which form part of the 

greater East African montane forest ecosystems. 

Integration of Geographical Information system (GIS) and 

AHP techniques was used to evaluate the potential of 

seven independent variables in contribution of wildfire 

risk, namely; land cover, NDVI, precipitation, elevation, 

slope, distances from PELIS and roads. The results 

indicated that the largest spatial area falls within low 

wildfire risk zone (43.4%) followed by moderate zone 

(30.1%). The high and very high wildfire zones occupy 

about 13.1% and 4.4% respectively (Table 5). High 

number of validation fire points (over 80%) within 

moderate and higher wildfire risk zones demonstrate the 

robustness of our model. 

 

The areas within higher wildfire risk zones   corresponds 

to areas in open forest and wooded grassland, which have 

low NDVI. This indicates the strength of vegetation 

variables in modelling wildfire risk. Our results concur 

with studies of Parajuli et al., (2020) in Nepal, which 

indicated the importance of vegetation types in fire 

ignition and spread. Although our study indicated high risk 

in open forest and grasslands, the studies of Matin et al., 

(2017) indicated high risk in broadleaved forest and shrub 

land. However, their study area had myriad of other threats 

contributing to fire risk such as proximity to settlement 

areas and road networks. The high and very high wildfire 

risk areas are located in the national park and transition 

areas with forest reserves, which are very important for 

biodiversity conservation. 
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Figure 5. Fire risk map based on seven factors 

 

 
Figure 6. Validation of wildfire risk with VIIRS 

satellite data 
 

Hence, the risk is a threat to the existence of endemic fauna 

found nowhere else other than in the Aberdares as listed 

by a report by Kenya Forest Service (2010).  Further, the 

studies of Kipkoech et al., (2020) documented six plant 

species endemic to Aberdare namely; Dendrosenecio 

brassiciformis, Senecio amplificatus, Senecio margaritae, 
Lobela gregoriana subsp. Sattimae, Eragrostis Amanda, 

Ranunculus aberdaricus. The moorlands which form part 

of the vegetation in the very high-risk areas has been 

recognized as having endemic and vulnerable restricted-

range bird species such as Aberdare Cisticola, Sharpe's 

Longclaw and Abbott's Starling (Kenya Forest Service, 

2010)   

 

This study has shown that the amount of precipitation is a 

moderate factor in wildfire risk analysis since in the 

Eastern side of the Aberdare ranges the risk was low 

compared to the western side, which had higher risk 

(Figure 2c). This is in contrast with studies of Abdi et al. 

(2018) that reported weak relationship of precipitation and 

wildfires. However, our study is in agreement with the 

findings of Mohammadi et al., (2014) which reported 

strong positive relationship of precipitation and wildfire 

risk. In Mt. Kenya, Poletti et al., (2019); Downing et al., 

(2017) indicated a fire season pattern that was in tandem 

with dry period over the years in their study. Figure 3 

further exemplifies this scenario of high fire incidences in 

the month of January to March corresponding to dry period 

in Kenya. The long dry spell results to moisture deficient 

making vegetation susceptible to fire ignition and spread.  

 

The findings this study shows anthropogenic factors 

namely PELIS and roads did not have significant 

contribution to wildfire risk as attested by low criteria 

weights during AHP analysis (Table 4).  Our findings are 

contrary to the study of Vilar et al., (2016) which indicated 

a significant contribution of roads distance to wildfire risk. 

This can be attributed to poor road network in Aberdares 

ranges with minimal movements within the national park 

and forest reserve. Actually, there are no roads in high 

elevation areas with high wildfire risk. Tourists and 

government agency officers use the few roads available 

during sight-seeing and patrol respectively. They are 

normally guided by strict government guidelines and rules 

such as periodical fire alerts and preparedness bulletins to 

avoid wildfire ignitions. Further, there has been 

government moratorium on logging activities within state 

and community forests, which include Aberdare ranges 

(Kagombe et al., 2021). This has rendered most of the 

roads used during logging operations impassable and 

consequently reducing the human-forest interaction. On 

the other hand, lack of better road network could also 

contribute to spread of fire after ignition since fire 

suppression requires proper accessible routes for fire 

fighters and can also act as fire breaks. This study has also 

demonstrated the minimal contribution of PELIS in 

wildfire risk (Figure 4). Generally, PELIS is practiced 

within the forest plantation areas during trees established 

and early silvicultural operation.  However, in areas 

mapped as PELIS were within the low and very low 

wildfire risk zones. This study is consistent with a study in 

Mt. Kenya Forest by Nyongesa and Vacik, (2018) which 

indicated illegal charcoal burners, honey harvesters and 

arsonist as key human factors in wildfire occurrences. 

These illegal activities are normally practiced deep in the 

natural forest in close vicinity to open forests and 

grasslands where scout rarely visits due to poor terrain and 

other threats. According to Nyongesa and Vacik, (2018), 

PELIS is a highly regarded venture due to provision of 

livelihoods among the forest adjacent communities. It’s 

guided by strict by-laws among the community Forest 

Associations (CFAs) formed in close collaboration with 

KFS hence cases of wildfires risk are minimal as attested 

by the study of Agevi et al., (2016).      

 

According to studies of Renard et al., (2012) the generated 

wildfire risk maps can be used to delineate hotspots areas 

and assist the natural resource practitioners in timely 

wildfire suppression work. Further, the output of this study 

will be crucial to strengthen the preparedness and 

mitigation measures of wildfire management and protect 

these important biodiversity resources. 
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Conclusion and Recommendations 

 

A wildfire risk map has been developed using local 

independent factors generated from the stakeholders, earth 

observation products and geospatial tools. The vegetation 

factors and precipitation have been highly prioritized in the 

prediction of wildfire risk. The developed equation can be 

used to predict fire risk in Aberdare ranges. However, for 

the equation to be applied in other regions, there is a need 

to update the weights of the factors based on prevailing 

ground conditions. There is also need to validate the model 

in different forest ecosystems.   

  

Whereas this study has demonstrated the strength of 

vegetation variables in modelling wildfire risk, the 

anthropogenic factors cannot be ignored especially if the 

study area is not a nature reserve as the case of Aberdares. 

It would be crucial to focus future research in other areas 

with different tenure system like community forests which, 

have high human related threats such as grazing and other 

development issues. Further, Aberdare ranges has a very 

rugged terrain and different topographical features which 

could have been hindering prompt suppression of wildfires 

upon occurrence. Therefore, it would be important that 

future research direction would be geared toward testing 

our model in other areas with different terrain, 

agroclimatic zone and land cover characteristics. This 

study integrated geospatial tools with AHP in predicting 

wildfire risk; it would be prudent to test the application of 

other methods in deriving wildfire risk maps    
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